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Abstract

The problem addressed in this thesis concerns the design and implcmentatioi uf a higlh level

data base query language translator based on the nested relational data model. The objectihe of tie

model is to increase the performance of the relh-tional mc,del by modeling re,,I-world objects in the

problem domain into nested relations. The translator is designed within the EXODUS extensible

architectural framework for building application-speific database systems. The SQL/NF query

language used for the nested relationil model is an extension of the popular relational model query

language SQL. The query language iG translated into a nested relational algebra (Colby algebra)

in the form of a-query tree structure. A large amount of theory exists for the nested relational

model, however, very little information on the implementation of a high level qucry languagc for

the model is available. This thesis effort provided the front end to a proto-type nested relational

data base management system (Triton) using the EXODUS tool kit.

In Triton, EXODUS is used to implement the first stages of the data base management

system. These stages include the parser and the catalog manager. Since the EXODUS tool kit

does not provide a parser development tool, we chose to use the popular UNIX tools "LEX" and

"YACC" to parse the SQL/NF query statements and execute the C programs necessary for creating

and maintaining a data dictionary, generating a SQL/NF query tree, and translating the SQL/NF

query tree into a Colby algebra query tree. The Colby algebra tree is available for the next stage

of the EXODUS architecture, the query optimizer.

ix



SQL/NF TRANSLATOR

FOR THE

TRITON NESTED RELATIONAL DATABASE SYSTEM

I. Introduction

The storage and retrieval of information by computers plays an increasingly important role

ii our daily lives. Banking transpctions, inventory management, personnel record keeping, and

payroll processing are only a few of the many traditional applications which require the cfficicnt

.aanipulation of large amounts of data. The manipulation of these large amounts of data is ac-

complished through the use of some type of database management system (DBMS) The desire to

utilize database systems for what are commonly known as non-traditional applications is o:, the

rise. Some of these non-traditional applications include computer-aided design (CAD), compuiiter-

aided manufacturing (CAM), computer-aided engineering (CAE), and audio/video data. In this

thesis we address a database model which can meet the requirements-of these applicatioins along

with a query language to manipulate the database.

The purpose of this thesis project is to design and implement a translator for SQL/NF that

will parse a subset of SQL/NF query statements and produce a QUERY tree structure that will be

compatible with the recursive algebra for nestc I relations developed by Latha S. Colby (4). This

algebra for nested relations (Colby Algebra) was chosen as the nested algebra for the translator

because it allows tuples at all levels of nesting in a nested relation to be accessed and modified

without any special navigational operators and without having to flatten the nested relation. The

SQL/NF translator will be the "front end" to the Triton nested relational database management

system, using the EXt. UIS tool kit.
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1.1 Background

The relational database model, introduced by Codd (3), is the most prevalent design used

in commercial database systems today. The relational model is best described as a collection of

relations, which are represented by tables with common properties or attributes. The tables are

arranged so that the columns contain the attributes of the relation, and cach row in thc table

contains an instance of the relation, which is known as a tuple. Operations are provided by the

database system to modify or retrieve information from the relations in the database. These

operations are based on relational algebra and calculus, and provide the foundation for on-going

work in relational database models.

The traditional relational model requires that all values in a relation be atomic in nature.

That is, each attribute of each tuple in the relation must be a single entity such as a number or

a character string. When a relation meets this requirement it is said to be in first-normal-form

(1 N F).

The theory of nested relational databases was motivated by the observation that quite often

in a relational database system it is desirable to store a set of values for an attribute rather Cian

a single value. In a nested relation, attributes can be relation-valued as well as atomic-valued. A

relation which occurs as the value of an attribute in a tuple of another relation is said to be nested.

Therefore the nested relational model allows the database to represent complex information in a

format that more closely resembles the real world.

1.2 Nature of the Problem

The nested relational database model is a relatively new concept that provides for the storage

of information in a database that does not fit the traditional relational database format.

1-2



"There is a growing interest in abandoning the first-normal-form assumption on which
the relational database model is based. This interest has developed from the desire
to extend the applicability of the relational model beyond traditional data-processing
applications." (13:99)

The nested relational model extends the capability of the relational model for non-traditional

data to be stored in a DBMS. A formal implementation scheme is needed to further explore the

applications for and capabilities of nested relations.

SQL (Structured Query Language) is the relational database language pioneered in the IBM

System R project and subsequently adopted by IBM and others as the basis for numerous com-

mercial implementations and as the base for several extended research prototypes (see for example

(15)). SQL/NF, designed at the University of Texas at Austin (13), is an extension of SQL designed

to operate on nested relations. The primary objective in designing SQL/NF was to provide a Jan-

guage that could be used to query nested relational databases. SQL/NF was designed to enhance

SQL's capabilities by modifying all the SQL operators in order to operate on nested relations. In

addition to all the operators present in SQL, SQL/NF identifies two more - the "nest" and "unnest"

operators, which are necessary to convert flat relations (1NF) to equivalent nested rc!ations and

vice versa.

SQL is the current industry standard for relational database systems, and SQL/NF extends

this standard so that it may also work with nested relations. Therefore a complete system which

extends the capabilities of SQL to operate on nested relations is the goal of a prototype nested

relational database management system being developed at AFIT, known as Triton.

1.3 Scope

The SQL/,N translator is able to parse all thc SQL/,,' clauses as defined by thc IF in

Appendix C. Implementation of the query statements is limited to the clauses requircd for the

creation and deletion of items in the data dictionary and the clauses that will directly translate

1-3



into the appropriate algebraic operations of: select, project, and cartesian-product. In addition it

will be able to parse the SQL/NF operators of: nest and unnest. All these operations will be stored

in a "Query tree" structure that will represent the Colby algebra (4) translation of the input query.

This query tree will be in such a format to be easily used as the input to the query optimizer stage

of Triton using the EXODUS tool kit.

1.4 Approach/Methodology

The primary goal in this thesis effort has been to gain an extensive knowledge of nested

relational data base theory, in addition to the SQL/NF query language and use of the EXODUS

tool kit. The approach we took was to first design and implement a parser using the LEX and

YACC compiler tools of Unix, then design and implement the E code' for the catalog manager,

then design and implement the C code for an SQL/NF query tree structure, and finally design and

implement the C code that translates the SQL/NF query tree into a query tree structure for the

Colby algebra.

1.5 Organization

Chapter 2 begins with a background discussion of the nested relational database model,

followed by an overview of some of the nested relational algebra's that have been proposed, and

some work closely related to this thesis. Then an overview of the EXODUS database system

project as related to this thesis effort is presented. Chapter 3 begins with an in depth discussion

of the nested relational algebra presented by Lathia S. Colby (4) , followed by a description, of the

SQL/NF query language presented in (13). Chapter 4 describes the design and ii-plementation

of the translator using the EXODUS tool kit. Finally, conclusions about this thesis effort are

presented, in Chapter 5, with recommendations for future work.

'A persistent programming language provided as part of the EXODUS tool kit. (See Section 2.5)
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II. Summary of Current Knowledge

2.1 Introduction

We begin this chapter by giving a brief introduction to the concept of nested relations as

compared to standard relations (those that meet the criteria for "first normal form" or INF).

Next, we provide all overview of the development of the Nested Relational Database Model (also

known as "non-first normal form" or NF2 ). This we follow with a brief summary of some of the

algebra's that have been developed for use in association with the Nested Relational Model (NRM).

Next, we provide an overview of some related work for an SQL/NF parser. Finally, we discuss the

EXODUS(2) extensible database system project.

2.2 The Nested Relational Database Model

2.2.1 First Normal Form vs NRM. A relational database is normally described as a col-

lection of "tables" which correspond to instances of the various relations of the database (8). In

a given table the rows-correspond to tuples of the relation depicted, and the columns correspond

to attributes of the relation. The attributes which form a particular table, or relation, compose

the scheme of that relation. This scheme is usually thought of as the pattern which is followed

when particular attribute (and hence tuple) values are assigned. In addition, each attribute has

an associated domain from which individual values must be chosen. Thus an entry in the location

r'owi, columnj represents the value of the ith tuple from the domain of the jth attribute.

The traditional relational model introduced by Codd (3) in 1970 requires that all values in

a relation be atomic. That is, each attribute of each tuple in the table must be a single entity

such as a number, or a character string. When this requirement is met the relation is said to be

in First Normal Form (1NF). Although this model is sufficient for representing objects that hac

simple domains, complex objects cannot be represented easily. Normalization in thc relational

model causes a lot -of fragmentation in the representation of objects. Information about objects
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and their relationships can be scattered over several different tables. This in turn causes querics

to the database to be slow and complicated since excessive joins have to be pcrfornmed among the

various tables in the database (4).

The nested relational model, also known as Non-First Normal Form, is an extension of the

traditional relational model without the first normal form restrictions. Without this restriction the

attributes of a relation can have non-atomic values. This corresponds to allowing for unnormalized

relations. Makinouchi (9) introduced this concept by suggesting that the 1NF assumption be

relaxed so that the attributes can be "set-valued".

COMPANY
I d n  I dna m e  l c ename

dnol - dnamel locli enamel
dno2 J dname2 loc2 ename2
dnol dnamel locl ename3
dno2 dname2 loc2 ename4

Figure 2.1. 1NF Database 'able

In order to illustrate these concepts let us consider the simple example shown in Figure 2.1.

The example is a 1NF (flat) database scheme for some company. The database consists of a table

with atomic attributes of dept number (dno), dept name (dname), location (loc), and employee

names (ename). If we recognize that the relation contains a "set" of employee's by dept number,

then the values for the ename attribute can be nested in a more compact nested relation a bhumi

by the scheme in Figure 2.2. The relation COMPANY now consists of the atomic attributes dno,

dname, loc, and the complex attribute emps.

COMPANY
I dno dname loc emps
I dnoI dname locl I {enamel, ename3}

dno2 dname2 l 2  { ename2, enamne4LI

Figure 2.2. NF 2 Database Table
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2.2.2 Operators for Single Attribute Nested Relations. The nested relational model call be

considered a superset of the traditional model, in as much as retaining the same operations. Ilow-

ever, most research efforts have pointed out the need for determining how one might create ui-

normalized (NRM) relations from normalized (1NF) relations, and what additional operations

should be defined for nested relations. These requirements were addressed in 1982 by Jaeschke and

Schek(7).

2.2.2.1 Nest and Unnest Operators. The first requirement addressed by Jaeschke and

Scliek was the definition of the "nest" operator, which transfers a flat relation into a nested relation.

This nest operator works by examining the value of a particular attribute within all tuples of the

relation and partitioning the tuples along the remaining attributes (8). That is, it forms a single

-tuple with a new attribute name in place of the set of values in the tuples being grouped together.

Using the previous company database example, the nest operator will transform the 1NF table in

Figure 2.1 into the nested relational table of Figure 2.2. This would be done by applying the nest

operator to the "ename" attribute in Figure 2.1, compressing the associated values of the attribtitc

into the company table of Figure 2.2, producing a new complex attribute of "enps".

It is important to note that this definition of the Nest operator only allows nesting on a sii gi.

attribute at a time. This definition also does not cover the nesting of attributes within already

set-valued attributes.

The second requirement addressed by Jaeschke and Schek was the definition of the "unnest"

operator, which performs the inverse of the nest operator. That is, unnest will flatten out the

relation created by the nest operator back into a 1NF relation. This unnesting is performed by

combining each element of a nested attribute with repeated occurrences of the associatcd partition

of unnested attributes (8). Again, using the previous company database examlelc, the UwIict

operator would transform the nested relational table of Figure 2.2 into the flat rclational tablc of

Figure 2.1. This would be done by applying the unnest operator to the "emps" attribute, thus

2-3



expanding the table to its original 1NF form.

2.2.2.2 Relational Algebra Operators. Jaeschke and Schek also briefly addressed the

possibility of applying the normal relational algebra operators to the nested relations. Thc said

that "union, difference, projection. and the cartesian product call be defined for all relations, so

they also apply on [nested] relations." Therefore, allowing the comparison of set-valued attributes

via the set comparison symbols (C, D, C, D, =) also "extends" selection to nested relations (8).

The last item Jaeschke and Schek defines are two methods of performing a natural join of

nested relations. The first method can be considered an "extension" of the "normal" natural join

(8). The second method is called the "intersection join". These methods will be further explained

in Chapter 3, as they are defined for the nested relational model used by-the Colby Algebra.

2.2.3 Operators for Multi-Attribute, Multi-Level Nested Relations. Expansion of the work

done by Jaeschke and Schek to allow for multiple attribute nesting and multiple levels was accom-

plislhed by the efforts of Fischer and Thomas (17). They extended the definitions of the relational

algebra operators in view of increasing the scope for nested relations. This included providing

results concerning properties associated with the interaction of nest, unnest, and the relational

algebra operators.

The nest operator of the extended definition allows each element of a set associated with a

given partition to in turn be a set of attributes instead of merely a single attribute. This allows for

nesting of more than one attribute at a time and for multiple levels of nesting. Thcse unnormalized

relations permit components of tuples to now also have relations as attributes, forming subrelations

of the relation. The nested relational model allows users to view the -database in a way that more

closely represents a real world concept of complex objects. The associated relations can now be

represented as a whole entity in a single nested relation instead of being distributed over scvcral

different fiat relations.
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The unnest operator of the extended definition repeatedly combines each element of a, nested

attribute with its associated partition of remaining attributes so as to "flatten" the overall structure

back to its 1NF form (8). These developments will be incorporated in the discussion of the definition

for the nested relational model as it is used with the Colby Algebra in the next section.

Now we have seen that although nested relations can consist of relations and atomic attributes,

the basic relational structure is still the primary building block. However, the nested relational data

model, to form its very structure, must provide a means to construct nested relations in addition

to using the basic relational operators (10). Before proceeding to discuss these operators further,

an example is in order.

DEPT
dno dname oc

EMP
eno ename no sa

CHILDREN
eno cnamej o

Figure 2.3. 1NF Database Headers

A nested relational structure can be created from the three flat relations in Figure 2.3 to form

the NRM relational structure of Figure 2.4. The EMP relation can be inserted in the DEPT relation

as a relation-valued attribute by their common attribute of dno, and the CHILDREN relation can

be inserted in the EMP relation as a relation-valued attribute by their common attribute of Cno.

These now form the new NRM relation of CQMPANY with a relation-valued attribute of Emp and

atomic attributes of dno, dname, and loc. The subrelation Emp has a relation-valued attribute of

Children and atomic attributes of eno, ename, and sal. Finally, the subrelation Children has only

atomic valued attributes of cname and dob. In this case, two levels of nesting have occurred within
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the COMPANY relation.

COMPANY
dno dname 0c p

eno ename sal Children
cname co

Figure 2.4. Nested Database Table header

2.3 Nested Relational Algebras

The following sections provide a summary of some of the work currently going on in the realm

of algebras for the nested relational model and a version of a translator for SQL/NF.

2.3.1 Thomas and Fischer. The algebra introduced by Thomas and Fischer (17) is simply

an extension of the operators for the relational model. The definitions for the relational model

operators also apply for this algebra. Thomas and Fischer added the additional operators-of "nest"

and "unnest" t, manipulate the structure of the data being stored. However, in order for any

other operation to be performed, such as "select" or "project", the subrelation must be unnested

first. Then the normal operations are applied to the result. The unnesting is required because the

operators can only act upon the attributes at the top most level in a relation. Once an operation- is

complete, the results may haxe to be transformed back to the original form using the nest operator.

Therefore, this algebra merely stores the data according to the nested relational model, but any

manipulation of the data is done at the 1NF level.

2.3.2 A Recursive Algebra for Nested Relations. The algebra introduced by Colby (4) allows

subrelations at any ievel within a relation to be accessed and mainpuiatcd %vithuuti the iiud fui

a "nest" or "unnest" operation. In this algebra, the traditional relational operators ar; extcudcd

with recursive definitions so that they can be applied not only to relations but alU to sLIbilatiUon
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of the relation. The subrelations are accessed using a "recursive" list of attributes that identify the

path over which the extended relational operator(s) will perform their operations. The list is called

recursive because a single element of the list can be made up of another list of attributes and so

on. The main advantage of this method is that operations can be done without restructuring the

relation in order to extract data that has been nested at different levels within the relation.

2.3.3 Schek and Scholl. The algebra introduced by Schek and Scholl (14) allows subrelations

at any level within a relation to be accessed without having to perform a nest or unnest operation.

A special operator is identified as a "navigator" to access the nested subrelations. The navigator

Schek and Scholl chose to use is the projection operator (,r). This navigator requires that a qucry

performed on a subrelation is accomplished by a series of projects until the subrelatioii is reached,

followed by the desired operation. In addition to this sometimes awkward requirement, renaming

the results of the projections is necessary in a number of situations.

2.3.4 Deshpande and Larson. The algebra proposed by Deshpande and Larson (5) allows

subrelations at any level within a relation to be accessed without having to perform a nest or uinest

operation. Like Schek and Scholl (14), Deshpande and Larson chose to use a "navigator" type

operator method to access the nested subrelations. The navigation is performed via an extended

selection operator and a subrelation constructor. Their definition for the selection operator pro ides

the ability to access any nested subrelation. This access is done using the subrelation constructor

vhich creates new subrelations while traversing the lower levels in the relation. One added difficulty

with this method is that it requires introducing new relations, and subsequently the iced for the

user to provide a name for this new relation in order for the selection operator to function properly.

2.4 Some Related Work

The SQL/NF translator designed by Ramakrishnan (11) translates SQL/NF queries extended

with "role joins" to a nested relational algebra in three stagp"s which are termed:
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1. query transformation.

2. pre-processing.

3. meaning evaluation.

The first stage transforms the SQL/NF query statements into an intermediate form using the UNIX

tools LEX and YACC. The second stage further reduce the intermediate form generated in the first

stage using set-theoretic transformations. The final stage transforms the reduced intermediate

form into a nested relational algebra. This algebra is similar to the traditional relational algebra

introduced by Codd (3) except that a relation valued attribute may occur in any place all atomic

valued attribute can occur. In addition another operator is defined called "functional evaluatioii",

this evaluator provides for operations on nested expressions.

The result of the implementation of Ramakrishnan's translator is in the form of what is known

as a "Query Tree." This query tree is a data structure representation of the algebraic translation

of the SQL/NF query. One drawback of this translator is that additional software is required to

produce the desired results of the original SQL/NF query. This additional software must accept

the query tree data structure as input and perform the designateo algebraic operations in the query

Cree.

2.5 EXODUS

EXODUS (2) is an !xtensible database system poject that is addressing data managemcnt

problems posed by a variety of challenging new dpplications. The EXODUS project is being dcevel-

oped at the University of Wisconsin The goal of the project is to facilitate the fast development

of high-performance, application-specific dztabase systems. EXODUS provides an architectural

framework (see Figute 2.5) for building application-specific database systems. This architecture

provides powerful tools to help automate the generation of application-specific database systems,

including a rule-based query optimizer gerterator and a persistent programming language, and 1i-
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braries of generic software components that are likely to be useful for many applications. The

system compiler, used for the compilation of the system software, is based on the E programming

language (12), an extension of the object-oriented programming language C++(16). The two stages

of the EXODUS architecture that are addressed and implemented by this thesis project are the

Parser and Catalog Manager.

LII

OPERATOR
METHIODS

ACCESS
MANAGERMETHIODS

STORAGE
MANAGER

Figure 2.5. EXODUS architecture

2.5.1 Parser. The main purpose of the parser is to provide a way to link the user with

the database system through a high level query language such as SQL. The EXODUS tool kit

does not provide a parser development tool, so an alternative had to be found. The alternative

we chose to use is the popular UNIX tools of YACC (Yet Another Compiler Compiler) and LEX

(Lexical Analyzer). These tools have been proven successful in the associated projects by both
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Ramakrislnan (11) and Mankus (10).

2.5.1.1 YACCprogram. YACO is a general tool for describing the input to a computer

program. The YACC user specifies the structure of the input together with the code to be invoked as

each structure is recognized. YACC turns such a specification into a subroutine called yypaise that

handles the input process (6). The general format for a YACC program is described in Appendix A.

2.5.1.2 LEX-a lexical analyzer. LEX is a program generator designed for lexical pro-

ccssing of character input streams. It accepts a high-level specification for character string niatcliig,

and produces a program in a general purpose language that recognizes regular expressions. The

program generated by lex is called yylex (6).

LEX generates lexical analyzers in a manner analogous to the way YACC creates parsers.

The user inputs a specification of the lexical rules of a language using regular expressions together

with fragments of C to be executed when a matching string is found. The general format for a

LEX program is described in Appendix A.

2.5.1.3 SQL/NF translator parser implementation. LEX supp the ability to scan

and identify the words associated with the high level language of SQL/NF and convert them into

a predefined set of tokens. Once a token is returned from the scanner, the parser (YACC) matches

the token to-a predefined set of grammar rules. Within the grammar rules, statements in the furm l

of C code procedure calls are executed to direct the database system to carry out ,ome sj)cific

operation. The operations performed will generate input to and manipulate tle catalog manager

in addition to building the query tree.

2.5.2 Caialog manager. The catalog manager is the mechanism responsible for ensuriiag

proper organization of relational tables within the database. Whenever a iew dtt.ababe ib cbtuCd

or a current one opened, all references to any of the relations and their associated attributes
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are handled by the mechanisms implemented by the catalog manager. The manager should also

provide for persistence of the database information after termination of the database program.

The EXODUS tool kit provides a generic catalog manager that can be used to provide for these

requirements. Information required by the catalog manager to load its tables will be obtained

through the scanning and parsing of the data definition arguments of the SQL/NF commands.

Once the information is passed from the scanner, through the parser, and to the catalog manager,

the data must be input into its tables in a particular format defined within the Data Dictionary.

The information generated by the parser and stored in the Data Dictionary consists of two tables.

The first table contains the definitions of each relational scheme and the attributes, both relation

valued and atomic valued, associated with each scheme. The definitions of the relational tables are

stored in the second table of the Data Dictionary along with their associated scheme identifiers.

The composition of the Data Dictionary is identical to the one used by Mankus(10) and is described

in Section 3.4 of his thesis.
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III. Colby Algebra & SQL/ATF

3.1 Colby Algebra

The nested relational algebra developed by Latha S. Colby at Indiana University (4) is equiv-

alent in expressive power to the nested relational algebra of Thomas and Fischer (17) discussed

in the previous chapter. The Colby algebra, however, allows queries to be expressed more natu-

rally and succinctly without the need for restructuring the relation being opcratcd upon. li thc

next section we will define the Nested Relational Model according to Colby (4). Followed by a

description of each of Colby's NRM operators.

3.1.1 Definitions for the Nested Relational Model. Let A be the universal set of attribute

names and relation scheme names. A relation scheme of a nested relation is of the form R(S) where

1R E A is the relation scheme name and S is a list of the form (A1 , A2 ,. ., A,,) where each Ai is

either an atomic attribute or a relation scheme of a subrelation. If Aj is a relation scheme of the

form Ri(Si), then Ri, the name of the scheme, is called a relation-valued attribute of R.

For each atomic attribute A, in A, let Di be the corresponding domain of values. An instance

r of a relation scheme R(S), where S = (Ai, A2,..., A.), is a set of ordered n-tuples of tie form

(a,, a2, ... , an) such that:

1. if Ai is an atomic attribute, then ai E Di.

2. if Ai is a relaticn scheme, then ai is an instance of Ai.

An instance of a relation scheme is also referred to as a (nested) relation.

Let R(S) be a relation scheme. Attr(P,) is the set of all (atomic and relation-valued) attribute

names in S. RAttr'R) is the set of all relation- valued attributes in S. FAttr(R) is the set of all

flat or atomic attributes in S. deg(R) is the number of attributes in S. Henceforth, when we refer

to a re!ation scheme, we will ;efer to it by its name alone (e.g., R instead of R(S)). Let r be an
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instance of R and let t - i' (a tuple in relation r). If A E Ath-(R) then t(A) is the value of t in

the column corresponding to A. If B C Attr(R) then t[B] = t[AI]t[A2 ] ... 1t[A where Ai E B

(1 < i < m). Let c be a condition on R. if:

1. cis NULL;

2. c = aeb where,

(a) a is an atomic attribute of R and b is an atomic attribute or an atomic value, a and b

have compatible domains and E E {<, >, <, , =,}

(b) a is a relation-valued attribute of R. and b is a relation-valued attribute of R or an

instance of the domain of a and 0 E {C, D, _, _2 =,

(c) b is a relation-valued attribute of R and a is a tuple in some instance of b and E E {E, ?).

3. cl and c2 are two conditions on R. and c = cl A c2 or c = cl V c2 or c = -'cl.

If t is a tuple in some relation r E R, then:

1. Ifc = 0thenc(t)=

2. If c = aEb then c(t)

(a) t[a]Ot ju and b are both attributes.

(b) a~t[b] if only b is an attribute.

(c) t[a]Ob if only a is an attribute.

3. c(t) = cl(t) A c2(/), cl(t) V c2(t) and -,cl(t) when c = cl A c2, c =c V c2 and c = -,cl

respectively.

In tile example nested relation "Company" shown in Figure 2.4:
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1. R(dno, dname, loc, Emp(eno, ename, sal, Children(cname, dob))) is the scheme of the rela-

tion.

2. Attr(R) = { dno, dname, loc, Emp }

3. FAttr(R) = { dno, dname, loc }

4. RAttr(R) = { Emp }

3.1.2 The Nested Relational Recursive Algebra. The main objective of the recursive algebra

is to provide a way to access and manipulate data at all levels of a nested relation. The advantage of

this is that it can be done without restructuring the relation in order to extract data that is nested

at different levels within the relation. The operators of this algebra are defined in an extended

form (recursively) so that they can perform their operations on all sublevels of the relation without

having to use a special operator as a "navigator" to search through the relation. (The "navigator"

operator is further explained in section 2.3.3.) This also reduces the requirement for the number of

iest and unnest operations that would have to be performed without the recursive ability. In the

following sections we briefly describe the operators as defined by Colby. A list of the formats and

the formal definitions for all the operators can be found in Appendix B.

3.1.2.1 Selection (a). The selection operator can operate on attributes at any level of

the relation, even when the selection condition is not at the outermost level. This is done without

having to flatten the nested relation first. The select list is the key to the recursive nature of this

operator. Each subrelation (R,) is tested to see if tuples exist so that the condition on R, is met.

This is done for all subrelations until the bottom most subrelation is tested and the condition on

Ri is met. If every condition is not met (ie., an empty set is returned for one of the subrelations)

thcn an cmpty sct is rcturncd for the operation.

The selection operator requires three elements to select tuples from a nested relation. First,

the source relation name. The second element is a select list which permits the operator to Icach
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COMPANY
dno dname loc Emp

eno ename sal CnhildrenIcname I (lob

001 Eng Bldg3 111 Smith 12000 Jane May
Dave April

121 Jones 12500 Bob Oct
Sue , all

002 Mkt Bldg2 222 Adams 18500 Mary Dec
Mark March
Rick June

245 Carter 18000 Carol Aug
Mike Oct

263 Davis 20000 Bill Feb

Figure 3.1. Nested Database Table

any attribute, atomic or relation valued, and permits the operator to descend to any depth of the

relation. The last element is a set of conditions or predicates which can be specified for the top-

level atomic attributes or on any of the lower nested relations. The generic format of the selection

operator is as follows:

a(Relationondiin (Select list))

As an example, to select those tuples from the COMPANY relation (see Figure 3.1) in which

the department name is MKT and the employee makes more than 18000 will requirc the following

query:

(CO MPANYdnn,=,M "MKT" (Emp,,a> 1300o)).

The condition, dname = "MKT", on the top level atomic attribute, dname, alvays follows

the source relation name, COMPANY, while the lower level condition, sal > 18000, is specified

3-4



dno dname loc Emp
eno ename salj Children

cname (lob

002 Mkt Bldg2 222 Adams 18500 Mary Dec
Mark March
lRick June

263 Davis 20000 Bill Feb

Figure 3.2. SELECT operator results

within the select list after the subrelation name, Emp. The resultant set of tuples are shown in

Figure 3.2.

3.1.2.2 Projection (-r). The projection operator-can operate on attributes at ally level

of the relation, even when the attribute(s) being projected are not at the outermost level. This is

done, like the selection operator, without having to flatten the nested relation first. The key to the

recursive nature of this operator is the project list. The attributes being projected are identified

by R, which can be either atomic or relation-valued. If R, is relation-valued then Li identifies the

subrelations and/or atomic attributes of the subrelation R, that arc to be projected, and so forth.

This will produce a subset of the database with the header identified by the project list.

The projection operator requires two elements to project out the requested attributes from a

nested relation. First, a project list permits the operator to reach any attribute, atomic or relation

valued, and project out the contents of a single attribute column or an entire subrelation. It also

permits the operator to descend to any depth of the relation. The second element is the source

relation name. The generic format of the projection operator is as follows:

r((Project List) Relation).

As an example, to project the attributes of ename and cname from the nested relation COM-

PANY (see Figure 3.1) the following query would be made:
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ename Children
cname

Smith Jane
Dave

Jones Bob
Sue

Adams Mary
Mark
Rick

Carter Carol
Mike

Davis Bill

Figure 3.3. PROJECT operator results

7r((Emp(cnamne, Children(cname))COMPANY)

The project list contains two nested subrelations of Emp and Children, followed by another

project list of the desired attributes for that subrelation. In this case, the desired attributes for

Emp are the atomic attribute of ename and the subrelation of Children, with the desired attributes

for Children being the atomic attribute of cname. This project list precedes the desired relation

name, COMPANY, in which the project is to operate. The resultant set of 2 tuples are shown

in Figure 3.3. Smith and Jones are members of the first tuple and Adams, Carter, and Davis arc

members of the second tuple.

3.1.2.3 Nest 0v). The operators nest and unnest restructure or change the way tuples

in a relation are grouped together in a nested relation. The nest operator and the unncst opcrator,

described in the next section. restructure only the subrelation that is specified without affecting any

of the other attributes in the relation. The nest operator groups targeted attributes situated at the

same level of nesting which agree on all the attributes that are not in the targeted attributes, and
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COMPANY
d no d name eno sat ename

Figure 3.4. 1NF Database Table header

nests this group one level deeper within the relation. The nest list identifies the targeted attributcs,

atomic and relation-valued, which are tc be grouped together for the new subrelation.

The nest operator requires three elements. First, a list of attributes that are to be nested at a

deeper level. Second, the name of the relation or subrelation that currently contains the attributes

in the list to be nested. The last element is the name of the relation-valued attribute that the

attributes will be nested under. The generic format of the nest operator is as follows:

v(Relation (Nest list) --* New Subrelation)

As an example, to nest the attributes, (eno, ename, sal), of the COMPANY relation of

Figure 3.4 into the subrelation Emp to form the corresponding relation COMPANY in Figure 3.5,

the following statement would be required:

v(COMPANY(eno, ename, sal) -- Emp)

The nest list, (eno, ename, sal), contains the names of the attributes that are to be nested.

This is preceded by the name of the relation, COMPANY, which current) contains the attributes

in the nest list. The nest list is then followed by the name of the new subrelation, Emp, that will

now contain the attributes in the nest, list..

3.1.2..4 Unnest (/p). The unnest operator performs the reverse of the nest operator.

This is done by 'ungrouping' or flattening out the subrelation identified in the uiiucst list into tic
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COMPANY
dno dname Emp

eno sal ename

Figure 3.5. NEST operator results

level above it. Multiple instances of the outer level are generated for each tuple that was originally

associated with it in the nested form. This operator only requires two elements. First, the name

or the relation that contains the subrelation to be unnested. Second, an unnest list which can

contain the single name of a top-level subrelation or another unnest list which contains . lower

level subrelation that is to be flattened back to the 1NF. The generic fornat of the tnest operator

is as follows:

it(Relation(Unnest list))

As an example, to unnest the relation found in Figure 3.5 back to the original relation found

in Figure 3.4 the following statement is used:

p(COMPANY(Emp))

The unnest list, (EMP), contains the nested subrelation to be flattened. This is preceded

by the relation name, COMPANY, which will now contain the flattened version of the nested

subrelation.

0.1.2.5 Cawlsian-Pioduct (x). The cartebian product opelatut allows ctuss-l)ioduktb

to be performed between a relation or a relation-valued attribute and another relation. This

allows-us to operate on tuples of a relation valued attribute nested deep inside the structure of the
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REL3

xl Z1 al
z2 a2]

x2 z3 I a2

Figure 3.6. Nested Database relation

REL4

Z1 sl t1
s2 t1

z3 s2 t2

Figure 3.7. Nested Database relation

rclation scheme. The result of this operation is a relation whose scheme has the attributes of both

the relations. Note; this operation is defined so that one operand can be a relation or a subrelation

while the other operand has to be a relation, since it is illogical to obtain a-cross-product of two

subrelations.

The cartesian-product operator requires three elements to perform the crossproduct of two

rclations. The first two arc the names of the relations or subrelations to be acted upon (see Note

above). The third element is the join path which is defined in Appendix B. This path indicates

the location of the attributes that the two relations are operated upon, in other words it is the

navigator used to reach the nested attributes of the subrelation required for the cross-product. The

generic format of the Cartesian-product operator is as follows:

x (Relationl (JoinPath), Relation2)
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x I A T I

x1 z1 al z1 sl Ul

s2 tli
z1 al z3 s2 2
z2 a2 z1 sl tl

s2 t
z2 a2 z3 s2 Q2

x2 z3 a2 z1 sl tl
s2 tl

z3 a2 z3 s2 t2

Figure 3.8. Result from Cartesian-Product

An example of the cartesian-product operator to obtain the cross product or R L3 or Fig-

ure 3.6 and REL4 of Figure 3.7 would be formulated as follows:

x(REL3(Y), REL4)

This would form the cross product using the Y subrelation of REL3 as the operand along

with REL4. See Figure 3.8 for result of operation.

3.1.2.6 Join (mn). The join operator has essentially the same properties and results

as the cartesian-product operator (see section 3.1.2.5) followed by a selection (sec section 3.1.2.1)

on the tuples that agree on the values of their common attributes. The gencric forinat of the juiin

operator would be as follows:

>o (Relationl(Join Path), Relation2)

An example of the join operator to obtain the join of REL3 of Figure 3.6 and REL1 of

Figure 3.9 would be formulated as follows:
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RELl
A B CJ

al bl g1l I el fl
g2 h2
g3 U e2 fl
g4 h4

a2 bl g5 hl e3 f2
g6 h2
g6 h4 e4 3

Figure 3.9. Nested Database Rclation

x Y
ZI A B U

(3, H] EllF

xl z1 al b gl lil el fl
g2I h2
g3 h3 e2 fl

g4 4
z2 a2 ITT g5 hil e3 f2

g6 h2 I-.. g6 h0 c4 M'

x2 z3 a2 hi g5 hi e3 f2
g6 h2
g6 IA e4 M'

Figure 3.10. Result from Join operator

m (REL3(Y), REL)

This would form the join using the Y subrelation of REL3 as the operand along with RELL. Sec

Figure 3.10 for result of operation.

3.1.2.7 Extended Binary Operators. The binary operators union, difference, and in-

tcrsection normally operate on entire tuples . These operators take two relations which have the
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REL2
A C

H~I~fE F
al bl g2 h2 el fl

g3 h4 e2 fl

a3 b2 g4 h2 e2 P2
g5 hi2

a2 bl g I 4  e4 f

Figure 3.11. Nested Database Relation

same relation scheme and return the union, difference, and intersection of the relations as defined

in normal set theory. The scheme of the resultant relation from these operations will bc the same as

that of the relations involved in the operation. The extended versions of these operators (up') alluw

,s to perform the operation between two relations so that the associated tuplcs of auy subrulatiuns

are also operated upon. This is done by testing each attribute at every level of one relation and

comparing it to each corresponding attribute at every level of the second relation. The relations in

Figure 3.9 and Figure 3.11 are used to illustrate these extended operators and the corresponding

results are shown in figures 3.12, 3.13, and 3.14.

Union (U,Uc).

The union of two relations in "standard" relational algebra produces those tuples which are

contained in both of the operand relations. This is also true for the extended version of the

operator, including the associated tuples of any subrelation. The operator requires only two

elements, both of which are the names of the relations to be operated upon. For example, to

perform a union of all the tuples of RELl and REL2 the following statement is required.

uc(REL1, REL2)
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A B (

al bl g2 h2 el fl
g1 Ill

g3 h4 e2 f1
g3 h3
g4 h4

a3 b2 g4 h2 e2 M2

g5 h2
a2 b1 g6 h4 e4 M"

g5 hlI e3 M"

g6 h2_

Figure 3.12. Result from Union operation

The result is shown in Figure 3.12. Without the extension the result would contain multiple

listings of the two al tuples from REL and REL2 because the nested values would not be

considered.

Difference (-,-.)

The difference of two relations in "standard" relational algebra produces those tuples which

are not common to both of the operand relations. That is all tuples which are in the first

relation which are not in the second relation. This is also true for the extended version of the

operator, including the associated tuples of any subrelation. The operator requires only two

elements, both of which are ti names of the relations to be operated upon. For cxamplc, to

perform the difference of all the tuples of REL and REL2 thc following statcmcnt is rcquircd.

-e(REL1, REL2)

The result is shown in Figure 3.13. Without the extension the resait woui(i be an empty

set because tihe A and B values from REL and REL2 are the same except for a3. Therefor
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A B(.

al bi gl il el fl
g2' 12 I

_g3 h3 e2 fl

a2 bl g5 hil e3 f2

Figure 3.13. Result from Difference operation

Al B C.

I a2 I b I g6 h4I e4 I P

Figure 3.14. Result, from Intersection operator

there are no tuplcs that are in REL1 but not in REL2 because the nvsted values would not

be considered.

• Interscction (n, n).

The intersection of two relations in "standard" relational algebra produces those tuples which

are common to both of the operand relations. This is also true for the extended version of the

operator, including the associated tuples of any subrelation. The operatoi requires only two

elements, both of which are the names of the relations to be operated upon. For example,

to perform an intersection of all the tuples of REL1 and REL2 the following statement is

required:

ne(REL1, REL2)

The result is shown in Figure 3.14. Without the extension the result would contain all listings

of the two al tuples and a2 tuples from REL1 and REL2 because the nested values would

not be considered only the top most attribute values (A and B).
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3.2 SQL/NF

3.2.1 Inhroducion. Roth, Korth and Batory (13) have proposed an extension to SQL called

SQL/NF. This extension has all the power of standard SQL as well as the ability to define nested

relations in the data definition language, and query these relations directl in the ncstcd furm. In

addition tc. adding the nest and unnest operations to the language, they also modified the existing

language to handle accessing nested relations. The method used by SQL to dcfine relations wa , also

modified for definin. nested relations. In this section we will describe the SQL/NF query languagec

as defined in (13). The BNF for the language can be found in Appendix C.

Before we introduce the SQL/NF language itself, let us introduce two sFample nested databases

(see Figure 3.15). We will use variations of these data bases as e':amples to help better under-

stand the .anguage definitions. First, we have an employee relation, EMPLOYEE, with attributes

(NAME), (AGE), department number (DNO), (CHILDREN), and (PROJECTS). The CHILDREN

relation in each EMPLOYEE tuple has attributes (NAME), (AGE), and (TOYS). The TOYS sub-

relation in each CHILDREN tuple has attributes (NAME), and (COLOR). The PROJECTS subre-

lation in each EMPLOYEE tuple has attributes (NAME), ard (NUMBER). Next, we have a coin-

pany relation, COMP, with attributes department number (DNO), department name (DNAME),

location (LOC), and employee (EMP). The EMP subrelation in each COMP tuple has attributes

employee number (ENO), employee name (ENAME), salary (SAL), and (CIlILDREN). The CIIIL-

DREN subrelation in each EMP itple has attributes child name (CNAME), and (late of birth

(DOB).

3.2.2 SQL/NF Query Facilities. The basic structure of an SQL/NF expression consists of

three main clauses: SELECT, FROM, and WHERE.

e The SELECT clause contains the list of attributes, from the relations in the FROM clause,

desired as a result of the query.
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EMPLOYEE
NAME AGE DNO RH1LDREN PIOJECTS

NAME AGE 'NAY NAME I NUMBER
NAME C OLOR
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DNO DNAME LOC E MP

ENO ENAME SAL I ('IL.It N
CNAME DOB

Figure 3.15. EMPLOYEE and COMP Relations

e The FROM clause contains the list of relations to be used to produce the desircd query results.

* The WHERE clause contains a list of predicates which qualify the selection of tuples from

fhe relations in the FROM clause.

The basic construct of an SQL/NF query is as follows:

SELECT attribute-list

FROM relation-list

WHERE predicate-list;

This select-from-where(SFW) expression is conceptually executed by performing a Cartcsian prud-

uct of all the relations in the relation list, selecting only the tuples that meet the conditions in the

predicate list, and then projecting only the attributes in the attribute list. If no tuple selection

conditions are required, the WHERE clause can be omitted. If all attributcs of the relation list

are desired then the attribute list can be replaced with the key-word ALL, to conform with the

proposed standard relational d,,tabase language known as RDL (1)
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SQL/NF also allows an even easier way to access the entire contents of a relation by replacing

the "SELECT ALL FROM relation-name" clause with only the "relation-name." For example, to

select all the tuples from the COMP relation in department number 123 the following query would

be used:

SELECT ALL
FROM COMP
WHERE DNO = 123;

Or using the simplified notation:

COMP WIIE RE DNO = 123;

Sometimes it is easier for the user to list the attributes which are not desired instead of listing all

the attributes desired. For this, SQL/NF allows the construct "ALL BUT attribute-list". As an

example, if the user desires to obtain all tuples in the EMPLOYEE relation which have a department

number 123 it would be redundant to list the DNO attribute for all the tuples therefore the following

query would list all the attributes but DNO:

SELECT ALL BUT DNO
FROM EMPLOYEE
WIIERE DNO = 123;

3.2.2.1 Nested Query Expressions. The principle of orthogonality has been usefully

employed in defining the nested data structure. Wherever a scalar (atomic) valued attribute coul

occur in a 1NF relation, a relation valued attribute can now occur. SQL/NF has the closure

property where the result of any query on one or more relations can also be considered a relation.

The principle of orthogonality allows a SFW-expression wherever a relation name could be ubed.

Therefore, in SQL/NF SFW-expressions are allowed in the FROM clause. For example, consider

the following query:
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SELECT NAME
FROM COMP, (SELECT ALL

FROM EMPLOYEE
WHERE AGE > 35)

WHERE COMP.DNO = EMPLOYEE.DNO AND DNAME = "SUPPLY";

This query would produce the name of all the employees in the SUPPLY dept who are over 35 years

of age. The SFW-expression in the FROM clause produces a relation with the same attributes as

the EMPLOYEE relation but contain only the tuples that have a value > 35 for the AGE attribute.

Then a Cartesian product is performed with the resultant relation and the COMP -elation. The

tuples which meet the conditions of the WHERE clause are then selected with the NAME attributc

from the EMPLOYEE relation being projected out. An equivalent SQL/NF query to the above

query which is more appropriate to what is actually taking place in the FROM clause would be as

follows:

SELECT NAME
FROM COMP, (EMPLOYEE WHERE AGE> 35)
WHERE COMP.DNO = EMPLOYEE.DNO AND DNAME = "SUPPLY";

A more complex example containing nested query expressions in the SQL FROM clause

involves the UNION operator. The standard SQL/NF format for using the UNIOA , ,. s as

follows:

query-expression UNION query-expression;

For example, given two relations COMP.A and COMPB which have the same scheme as the

COMP relation. If these two companies merge and it is desired to merge the two relations the

following SQL/NF query would be used:

COMPA UNION COMPB;

If a condition is set on what tuples are desired in performing the UNION, then in SQL the same

condition must be in the WHEREclause for both SFW-expressions. For example. givn the prc iuu

query with the condition that only the tuples with a location of "DAYTON" are desired, then the

SQL/NF query would be:
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SELECT ALL
FROM (COMP.A UNION COMP.B)
WHERE LOC = "DAYTON";

SFW-expressions in the SELECT clause are applicable when using a nested database. This is

because attributes in a nested database can be relation valued attributes, therefore, subrelation

iames can occur in the SELECT clause and under the principle of orthogonality SF\V-expressions

can also occur. The only restriction is that the relation name used in the SELECT clause mist

bc a relation valued attribute of one of the relations identified in the FROM clause. For example,

if all the information contained in the relation valued attribute PROJECTS of the EMPLOYEE

relation along with the employee- name, the following query could be used:

SELECT NAME, PROJECTS
FROM EMPLOYEE;

This query shows how a subrelation name (PROJECTS) would appear in the SELECT clause.

If the user requires to know which employees are working on project "X" then a condition

must be set on project name and the following query could be used:

SELECT NAME, (SELECT NUMBER
FROM PROJECTS
WHERE NAME = "X")

FROM EMPLOYEE;

This query shows how aSFW-expression would appear in the SELECTclause. Note that PROJECTS

is a relation valued attribute of EMPLOYEE and that the nested WHERE clausC conldition only

applies to the "NAME" attribute of the subrelation PROJECTS.

To illustrate a more complex nested SFW-expression in the SELECT clause, let's query the

EMPLOYEE relation for the name of the toys that employee Smith's children have:

SELECT (SELECT (SELECT NAME
FROM TOYS)

FROM CHILDREN)
FROM EMPLOYEE
WHERE NAh. - "SMITII";
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Note that SF-expressions in the SELECT clause are enclosed by "( )" for each levcl of nesting and

can only list attributes from the relation valued attribute identified in the associated FROM clause.

Since the NAME attribute under the TOYS subrelation is at the third level of nesting, three nested

SELECT statements are required to reach this level.

Nested SFW-expressions in the SQL/NF WHERE clause follow the same requirements as in

SQL. That is, the SFW-expression can't stand alone in the WHERE clause, it must be an element

of:

1. Comparison predicate.

2. BETWEEN predicate.

3. IN predicate.

4. LIKE predicate.

5. EXISTS predicate.

6. NULL predicate.

Consider the following example using the EXISTS predicate:

SELECT DNAME, EMP
FROM COMP
WHERE EXISTS (EMP WHERE SAL < 25000);

The resu:, of the above query on the COMP relation would produce all the department names

along with all the information contained in the EMP subrelation for all the departments that hac

at least one EMP salary value less than 25000.

3.2.2.2 Functions. In SQL, the argument to a function like AVG (average) can only be

an atomic valued attribute column in a relation and the result is a single scalar valuc. SQL/NF hab

expanded the argument for functions to include relation valued attributes. Then, by the principle

of orthogonality, the argument can include any expression that evaluates to a relation.
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Consider the SQL query to obtain the average age of the employees in tile EMPLOYEE

relation:

SELECT AVG(AGE)
FROM EMPLOYEE;

The argument to the AVG function is the entire AGE column of the EMPLOYEE relation, and

there is no vehicle to place a condition on selection of tuples averaged by the function (e.g. lVIIERE

AGE > 25). This is remedied in SQL/NF by applying the desired relation to the function and not

just a single attribute. Therefore the SQL/NF equivalent to the above query would be:

AVG (SELECT AGE
FROM EMPLOYEE);

The same query with the condition that the average age be determined for those employces over

25 would be:

AVG (SELECT AGE
FROM EMPLOYEE
WHERE AGE > 25);

Now let us consider a more complicated query where we want to determine the total amount made

by all the employees in the COMP relation, who are in the Engineering department and make less

than $50000:

SELECT (SUM (SELECT SAL
FROM EMP
WHERE SAL < 50000)

FROM COMP
WHERE DNAME = "ENGINEERING");

Another example, utilizing a function in the WHERE clause, is the query which identifies all the

departments in the COMP relation that have more than 5 employees:

SELECT DNO
FROM COMP
WHERE COUNT (EMP) > 5;
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In SQL, queries of this type are usually formulated using GRO UP B Y and HA VING clauses. These

are some of the hardest to formulate in SQL, and operate under a different set of rules from standard

SQL queries. Due to the ability of SQL/NF to allow nested queries in the SELECT clause and

the structuring ability of the nested model to already have attributes "grouped by", GROUP BY

and HAVING are totally unnecessary. By structuring relations appropriately, we can turn any

previous GROUP BYor HAVING query into a straight-forward SFW-expression. The elimination

of GROUP BY and HAVING is a major advantage of the nested model(13).

An additional advantag(e of SQL/NF's ability to accept relations or nested SF\V-exprcssions as

input to functions is to apply the function to several attributes simultaneously to - muilti-attribute

relation. The following example of this ability was given in (13). Suppose we have a Sales relation

with employee number(eno) and 12 sales attributes (Jan-sales, Feb-sales, ... , Dec-sales) showing

total sales for each month of the year for the employee. Then to get the total of all sales in each

month we can write:

SUM (SELECT Jan-sales, Feb-sales, Mar-sales, Apr-sales,
May-sales, Jun-sales, Jul-sales, Aug-sales,
Sep-sales, Oct-sales, Nov-sales, Dec-sales

FROM Sales);

Or using "ALL BUT attribute-list" the query can be simplified to:

SUM (SELECT ALL BUTeno
FROM Sales);

The SUM function is applied to each column of the argument relation. In geucial a column function,

(SUM, AVG, MAX, MIN), reduces a relation to a single tuple with the same number of attributes,

by applying the function to each column of the relation. A table function(COUNT), reduces a

relation to a single tuple with one attribute. Thus, the result of applying a function is always a

single tuple relation (13).

When a column or table function is applied to a nested relation it does niot leae the result inl

a nested form. Because it would not make sense to retain the relation structure for a singlc tuple.
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Therefore the result from a function applied to a nested relation is unnested one level.

3.2.2.3 NULL values and operations dealing with NULLs. The treatment of NULL

values encountered in a tuple by functions in SQL/NF is different from SQL. In SQL/NF an error

condition is raised when a NULL value is encountered while in SQL the value is simply ignored.

This forces the SQL/NF user to remove any NULLs before applying the function and prevents

inaccurate results from a query over a database that contains NULL values.

SQL/NF provides a method for dealing with subsumed tuples which is not available in SQL.

A subsumed tuple is like a duplicate tuple as they do not provide any more information than bunc

other tunle in the relation. For example the tuple t=<SMITII, NULL, NULL> is "subsumed"

by the tuple s=<SMITII, 123, MKT> and the tuple r=<SMITII, NULL, ENG> while it is not

"subsumed" by the tuple q=<Jones, 1.11, ACCT>. The information in tuples s and r contain all

the information in tuple t therefore it can be "subsumed" and considered a duplicate tuple. The

elimination of duplicate tuples in SQL/NF is accomplished the same way as SQL by using the

function DISTINCT, but this function does not handle subsumed tuples. The SQL/NF function

SUBSUME can be used to eliminate tuples that are "subsumed". For example, to get employee

names and project names from the EMPLOYEE relation and eliminate any subsumed PROJECTS

tuples, we would use the following query:

SELECT NAME, SUBSUME (SELECT NAME
FROM PROJECTS)

FROM EMPLOYEE;

Another method available in SQL/NF for dealing with NULL values is the PRESERVIE clause.

This clause is useful when performing a "join" on two or more relations, identified in the FROM

clause, based on conditions in the WHERE clause and it is desired to "preserve" the tuples of onc

of the relations that do not meet the conditions of the WIIERE clause. The tuples of the relation

in the PRESERVE clause are included with the results of the SFW-expression with the attribute

values of the other relations set to NULL for the "preserved" tuples. For example, if the two
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relations EMPLOYEE and COMP are joined on the DNO common attribute and it is desired to

also include any tuple in the COMP relation that does not have any matching EMPLOYEE tuplcs

we would use the following query:

SELECT NAME, AGE, DNO, DNAME, LOC
FROM COMP, EMPLOYEE
WHERE COMP.DNO = EMPLOYEE.DNO
PRESERVE COMP;

The result of this query would produce a relation with the attributes NAME, AGE, DNO, DNAME,

LOC. Matching the tuples in the COMP relation and EMPLOYEE relation with the same DNO

value. In addition, any tuple in the COMP relation that does not have a corresponding DNO value

in the EMPLOYEE relation will be included in the result with the attribute values for NAME and

AGE set to NULL.

3.2.2.4 Don't ',ure values. When comparing tuple literals with attribute values in the

Wi'IIERE clause, SQL/NF has provided for a "wild card" Nalue in the tuple literal. The wild card

value is the question mark (?). The "don't care" question mark can b used for any constant 'alue

in a tuple literal. For example, to find the name of all the employees in the EMPLOYEE relation

who have worked on project "X" , we could use the following query:

SELECT NAME
FROM EMPLOYEE
WHERE <"X", ?> IN PROJECTS;

3.2.2.5 Data and relation restructuring operations. The restructuring operations pro-

vided in SQL/NF for nested relaions correspond directly to the NEST and UNNEST algebra

operators as identified in section 2.2.3. The syntax for these operators is as follows:

NEST table-name
ON attribute-list [AS colum-name];

UNNEST table-name
ON attribute-list;
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Where "table-name" can be replaced, via the principle of orthogonality, with "(query-expression)".

The NEST operator provides for giving the newly created nested relation a name (column-namc).

lowever, if the name is left out the nested relation can't be referenced elsewhere in the query.

Let us consider restructuring the COMPANY relation in Figure 3.4 by nesting the attributes

(eno, sal, ename) in a relation valued attribute Emp. This will be accomplished by the following

query:

NEST COMPANY
ON eno, sal, ename AS Emp;

The resultant structure from this query can be seen in Figure 3.5. To restructure the COMPANY

relation in Figure 3.5 to the COMPANY relation in Figure 3.4 the following query would be used:

UNNEST COMPANY
ON Emp;

Consider the three 1NF database relation tables in Figure 3.16, these tables call be combined into

the single nested relation COMP (Figure 3.15) by nesting the CIIILD relation within the Employee

relation and nesting that result within the DEPT relation based on the common attributes DNO

and ENO. This can be accomplished by the following query:

SELECT ALL BUT Employee.DNO
FROM DEPT, (NEST (SELECT ALL BUT CIIILD.ENO

FROM EMP, (NEST CHILD
ON Cname, DOB AS CIIILDREN)

WHERE Employee.ENO = CIIILD.ENO)
ON ENO, ENAME, SAL, CIIILDREN AS EMP)

WHERE DEPT.DNO = Employee.DNO;

To obtain the three relation tables in Figure 3.16 from the COMP relation we Vould use the queries.

SELECT (SELECT ENO, CNAME DOB
FROM (UNNESTEMP

ON CIiiLDREN))
FROM COMP;
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Figure 3.16. Three Sample 1NF Relations

SELECT ENO, ENAME, DNO, SAL
FROM (UNNESTCOMP

ON EMP);

SELECT DNO, DNAME, LOC
FROM COMP;

The first query would produce the CHILD relation from COMP, the second query would produce

the Employee relation from COMP, and the last query would produce the COMPANY relation

from COMP.

One other restructuring operation known in SQL as the ORDE R BY clause is also available

in SQL/NF, with a change in syntax. The function rearranges the tuples of a relation in asccnding

(A SC) or descending (DESC) order based on identified attributes (column-nanic). Th. syntax

change follows the same structure as the other functions in SQL/NF as follows:

ORDER table-name
BY column-name [ASC1DESCI {, column-name [ASCIDESQ]}

Where "table-name" can be replaced, via the principle of orthogonality, with "(qucry-cxpressio0)".

For example, to obtain a list of tuples from the COMP relation which arc in ascendiig order bascd

on the department name would be as follows:
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ORDER COMP
BY NAME ASC;

3.2.2.6 Nane inheritance and aliasing. Sometimes a problem occurs when attribute

names of relations used in the FROM clause of a SFW-expression are not unique. This can be a

result of one or more of the following:

1. The need for multiple copies of the same relation being used in a SFW-expression.

2. Attributes with the same name in two or more of the relations in a SFW-expression.

3. The same name is used in nested relations within a relation.

The solution to the first condition is provided by SQL/NF by using a user dcfined iefcrencc name

instead of the original table name. This reference name is identified by using the key word AS

followed by the reference name. The syntax being as follows:

table-name AS reference-name;

'Where "table-name" can be replaced, via the principle of orthogonality, with "(query-expression)".

For example, to obtain pairs of all the departments in the COMP relation that are at the same

location the following query could be used:

SELECT COMPA.DNAME, COMPB.DNAME
FROM COMP AS COMPA, COMP AS COMPB
WHERE COMPA.LOC = COMPB.LOC

AND COMP.A.DNO < COMPB.DNO;

The solution SQL/NF provides for the second condition is similar to the previous solution in that

a reference name is also used. However, this reference name is provided by the original table name

and not the user. For example, let the DNAME attribute in the COMP relation be called NAME. If

both the COMP and EMPLOYEE relations are identified in the FROM claube of a SFW-expression

and the NAME attribute from COMP and the NAME attribute from EMPLOYEE is desired in

the SELECT clause, they can be uniquely identified as COMP.NAME and EMPLOYEE.NAME.
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The third condition usually appears when the UNNEST operator is used. For example, in

the EMPLOYEE relation NAME is used at the top level as well as in both nested relations of

CHILDREN and PROJECTS. If the PROJECTS nested relation is unnested the result would

produce two attributes with the same name (NAME). SQL/NF avoids this by identifying the

unnested NAME attribute as PROJECTS.NAME using a refeiance name from the original relation

name (PROJECTS). Reference names can also be dsd to simplify query statements by naming

a nested query statement and using that name elsewhere with the SFW-expressiun. For example,

remember the example query for the EXISTS predicate in section 3.2.2.1 where the nested query

expression (EMP WHERE SAL < 2500) was used ii, both the SELECT claus and the WhIE RE

clause. This query can be simplified using a reference name (SAL-limit) as follows:

SELECT (EMP WHERE SAL < 25000) AS SAL.limit
FROM COMP
WHERE EXISTS (SAL-limit);

3.2.3 Data Definition Language(DDL). The defining of relations in SQL is accomplished

via the CREATE TABLE command, and the defining of view is accomplished via the CREATE

VIEW command. The CREATE TABLE command incorporates a list of attribute names and their

respective domains (e.g. CHAR, INT, etc.) to define the structure of a relation. Our version of

SQL/NF 1 ,as defined in the BNF of Appendix C, uses a modified version of this CREA TE TA BLE

command to allow for nested relations. The SQL/NF version also incorporates a ,aiicty of integrity

constraints as proposed and defined in the RDL standard(l). These constraints can be spccified

along with the attribute names and domains and include (UNIQUE, NOT NULL, REFERENCES,

CHECK,...).

Let us continue our explanation of the CREATE TABLE command by providing an example

for creating the DEPT relation in Figure 3.16:

1 Note: Our version is different from the Data Definition Language defined in (13).
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CREATE TABLE DEPT
(DNO INT 1 UNIQUE NOT NULL,
DNAME CHAR 32,
LOC CHAR 24);

The key words CREATE TABLE are followed by the name of the relation (DEPT) being defined.

This is followed by a list of items which contains the attribute names (ONO, DNAME, LOC) and

their associated domains. The DNO attribute also has the constraints UNIQUE NOT NULL in

Ihe column definition which identify it as the "key" to the relation, for all the values must be

unique and can't be a NULL value. When a nested relation is desired to be creatcd, the attribute

item is replaced by a nested TABLE statement which consists of the ke% word TiBLE followed

by the nested table name and the list of attribute items as in the CREATE TI4BLE command.

For example, to create t!:e nested relation COMP in Figure 3.15 the following CREATE TABLE

command would be used:

CREATE TABLE COMP
(DNO INT 1 UNIQUE NOT NULL,
DNAME CHAR 32,
LOC CHAR 24,
(TABLE EMP

(ENO INT 1 UNIQUE,
ENAME CHAR 32,
SAL FLOAT4,
(TABLE CHILDREN

(CNAME CHAR 24,
DOB CHAR 7)))));

In order to simplify the definition of nested relations, SQL/NF allows the dcefinition of relation

"schemes" separately from the definition of the relations themselves. This is accomplished by th

CREATE TYPE command, which follows the same format as the CREATE TAIILE oinmadl.

The only difference between these two commands is that the CREATE TYPE commanr d specifies

table definitions without actually creating a table. The scheme name can then be used ihl placc

of the list of attribute items, thus simplifying the definition. This command is vcry useful whlkC

deeply nested relations are being defined or when the same type of nestud relatio n appearb 1i1vit

than once in a relation definition. For example, to create the COMP relation a scheme can be

3-29



defined for the CHILDREN relation and the EMP relation and then used in defining thc COMP

relation as follows:

CREATE TYPE CHILD
(ONAME CIAR 24,
DOB CHAR 7);

CREATE TYPE EMPLOYEE
(ENO INT 1 UNIQUE,
ENAME CHAR 32,
SAL FLOAT 4,
(TABLE CHILDREN CHILD));

CREATE TABLE COMP
(DNO INT 1 UNIQUE NOT NULL,
DNAME CIIAR 32,
LOC CIIAR 24,
(TABLE EMP EMPLOYEE));

The SQL CREATE VIEW command is also provided in SQL/NF to provide views of nested rela-

tions. The syntax is as follows:

CREATE VIEW table-name AS query-expression

For example, to create a view of the COMP relation which does not includ. the SAL attribute in

the EMP relation valued attribute would be defined as follows:

CREATE VIE W Comp.WOSAL AS
SELECT DNO, DNAME, LOC, (SELECT ALL BUT SAL

FROM EMP)
FROM COMP;

The DROP TABLE, DROP TYPE, DROP VIEW commands all operate ia the same way, in that

they simply delete a Table, Type, or View from the symbol table defined by a DDL statement. The

commands all follow the same syntax rules which is simply to identify the name of what is to bc

deleted following the key word5. For example, to delete the relation table COMP from the symbol

t.able the following command would be used:

DROP TABLE COMP;
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3.2.4 Data Manipulation Language (DML). In this section we discuss the commands used

in SQL/NF to store, modify, and erase data from relations in a database. The DML commands

can be thought of as functions, for they produce relations from relations with the added effect of

replacing the old relation with the resultant relation. The syntax for these commands (STORE,

MODIFY, ERASE) is adapted from the RDL standard (1) with the additional ability to work with

nested relations.

The STORE command is used to add new tuples to a relation via a user defined set of tuplCs

or via a query specification to another relation. For example, to add a two new employees to the

Employee relation in Figure 3.16 the command would be:

STORE Employee
VALUES <123, SMITH, 111, 25000>

<124, JONES, 222, 18000>;

The command also has an option where the user can specify which attributes are to be used. This is

accomplished by an attribute-list following the relation name. Consider the newly created CHILD

relation in Figure 3.16. If the user wants to enter all the ENO values from the Employee r-clation

into the CHILD relation without entering them by hand, the following command statemncl uia be

used:

STORE CHILD (ENO)
SELECT ENO
FROM Employee;

As each new tuple is stored in the CHILD relation, the value for ENO will be obtained from the

Employee relation and the values for CNAME and DOB will be set to the default value defined il

the CREATE TABLE definition or to NULL if no default is specified.

When dealing with a nested relation, the attribute-list will reflect the location of the attributes

desired by identifying the name of the relation valued attribute followed by an attribute-list for that

relation 2. For example, to store a new department in the COMP relation the folloving uolmlndnd

2 Note: Our version of the Data Manipulation Language is different from the DML defined in (13).
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COMP
DNO DNAME LOC -ENO ENAME MP

ENO EN M~lSAL I  CIEDITEN

001 ENG BLDG3 ill SMITH 12000 JANE MAY

DAVE APRIL
121 JONES 12500 BOB OCT

SUE JAN

Figure 3.17. Result from STORE command

could be used:

STORE COMP (DNO, DNAME, LOC, EMP(ENO, ENAME, SAL, CIIILDREN(CNAME, D)013)))
VALUES <001, ENG, BLDG3, (<111, SMITH, 12000, (<JANE, MAY>

<DAVE, APRIL>) >
<121, JONES, 12500, (<BOB, OCT>

<SUE, JAN>) >) >;

Tie result from adding the new tuple to the COMP relation can be seen in Figure 3.17. Notice

that within the single COMP tuple there are 2 tuples stored in the EMP nested relation an 2 tuplcs

stored in the CHILDREN nested relation for each EMP tuple.

The MODIFY command is used to change tuples that already exist in a database. This

is accomplished by setting a new value for the tuples and qualifying the change %vith an optional

WIIERE clause. For example, to insert a child name for employee number 121 in the CIIILD

relation, we stored earlier with employee numbers, we could use the following command.

MODIFY CHILD
SET ONAME = "SUE"
WHIERE ENO = 121;

If we wish to give all the employees in the Employee relation a 10% raise, the WIIERE clause can

be left out and the following command could be used:

MODIFY Employee
SET SAL = SAL*1.1
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When dealing with nested relations the syntax becomes a little more complicated for the path to

the sub-relation being modified needs to be identified as well as the modification. This is done by

nesting DML commands in the SET clause of the MODIFY command. For example, to add a ncw'

child to employee Smith in the COMP database of Figure 3.17 the following command could be

used:

MODIFY COMP
SET EMP = (MODIFY EMP

SET CHILDREN =-STORE CIIILDIREN
VALUES <BILL, AUG>)

WHIERE ENO = 111)
WIERE DNO = 001;

The ERASE command is used to erase tuples from a relation, qualifying the target tuple by an

optional WHERE clause. For example, to erase the tuple we modified earlier in the CHILD relation

the following command could be used:

ERASE CHILD
WHERE ENO = 121;

Consider the relations in Figure 3.16, if the user wishes to remove all tuples in the Employee relation

which don't have a child in the CHILD relation, the following command could be used:

ERASE Employee
WIIERE NOT EXISTS (CHILD WIIERE Employee.ENO = CIIILD.ENO);

If a tuple that is in a nested relation is to be erased the MODIFY command must be used in

conjunction with the ERASE command. For example, if the user wishes to erase the tuplc in the

CHILDREN nested relation of COMP we added earlier the following command could bc utbed.

MODIFY COMP
SET EMP = (MODIFY EMP

SET CHILDREN = (ERASE CHILDREN
WIERE CNAME = "BILL")

WIIERE ENO = 111)
WHIERE DNO = 001;
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IV. Design & Implementation

4.1 Introduction

In this chapter we discuss the design process for the SQL/NF translator and the methodology

used to implement it. The basic process for translating an SQL/NF query statement to a Colby

algebra tree is as shown in Figure 4.1. In addition we discuss the design and implementation process

for the symbol table which is part of the EXODUS catalog manager. First, we describe the Lexical

Analyzer and Parser process used for both query translation and symbol table creation. Next, we

describe the Data Dictionary design and implementation, followed by a description of the SQL/Nr

query tree generating process, and last we discuss the generation of the Colby algebra tree from the

SQL/NF query tree. We will also present some sample SQL/NF queries with their Colby algebra

equivalents.

YACC

Paiser"

SQb/NF Lexical TOKENS SQL/NF

QUERY Analyzer ProcEssEs

SQL/NF

Query

TrSee

Colby Colby

Processes Algebra

Figure 4.1. Query Tiree Process

4.2 Parser

In Section 2.5.1 we identified the UNIX tools of YACC and LEX as our method for imnple-

menting the parser component of the EXODUS architechture. The parser pro.ceb ib ad"uiiiplhud

4-1



(ddl statement) ::= (schema) I (scheme)
(schema) ::= CREATE {(table definition) I (view definition))

Figure 4.2. SQL/NF sample BNF

in two steps. In the first step, the query is scanned by the lexical analyzer (LEX) which assigns

a "token" to the key words and other components of the query statement and returns a stream of

these tokens. The second step is accomplished by YACC, which receives the stream of tokens anid

organizes them according to the input structure rules, when one of these rules is recognized the C

code in the action part of the rule is invoked.

.4.2.1 The LEX process. To implement the LEX process was a straight forward task of

creating the file scanner.1 which contains all the definitions for the key words and other components

(punctuation, integers, identifiers, etc.) in the LEX format described in Appendix A. The key words

are taken from the SQL/NF BNF found in Appendix C. The program yylex is generated using the

LEX compiler with the file scanner.l.

4.2.2 The YACC process. Implementation of the YACC process was accomplished by first

creating the file parser.y which contains the translation of the SQL/NF BNF, found in Appendix C,

into the YACC format described in Appendix A. This was also a relatively straight forward process,

though time consumming, for the BNF format is almost identicle to the YACC format. For exaniplc,

the BNF in Figure 4.2 is translated into the YACO format shown in Figure 4.3. The key word

tokens returned from yylex are identified as "T-key-word". The C code that is executed, when a

grammar rule is recognized, is enclosed by { and }. The program yyparse is generated uising the

YACC compiler with the file parser.y.

In order to verify that the parser was correctly identifying the SQL/NF grammar rules (sbyn-

tax), only print statements were enclosed in the executable section of each rule (see Figure 4.3).

These print statements identified what syntax rules were satisfied for the input query. When testing
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ddl-statement
schema
{

printf("\nFound DDL STATEMENT");
}

I scheme
{

printf("\nFound DDL STATEMENT");
}

schema
TCREATE table-definition
{
printf("\nFound CREATE TABLE definition");

}
I TCREATE view-definition

{
printf("\nFound CREATE VIEW definition");

}

Figure 4.3. YACC format for SQL/NF sample BNF

thi. version of the parser, conflicts arose from ambiguities in the definitions in the original BNF in

(13). In particular, some of the definitions dealing with nested query expressions and table names

created problems. Therefore the BNF was modified to accommodate YACC and eliminate any

ambiguities. Once this phase was complete we began adding the C code, to the executable section

of the rules, to implement the symbol table, Sql query tree, and Colby algebra tree processes.

4.2.3 Parser Input. The first version of the parser was created with the ma ll procedll'e

calling yyparse which read input directly from standard input and required the user to input all

key words in upper case letters. This also limited the structure of the input query statement to a

single continuous line of text entered from the keyboard. To correct the first problcm, the maui

procedure was modified so that it would convert the input query to all capital letters and sture thu

new version in the file queryfile. Then the main procedure defines standard input to be the file

queryfile before calling yyparse . However, the modified main procedure would niot worl, wliun
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Table
name

col-spec
itemn-list

sclieme-name

ITEM
name
attr

numb
nest

next

Figure 4.4. The Table and ITEM data structures

standard input was from the keyboard. This problem along with the above second problem was

corrected by creating a separate procedure SQLNF which reads formatted lines of text entered from

the keyboard until a ' ; ' is encountered and stores it in the file input..file. Thcn the procedure

calls the main procedure redirecting standard input to be from the file input.file.

4.3 Calalog Manager

In Section 2.5.2 we identified the composition of the Data Dictionary used by the Catalog

Manager to be identical to the one developed by Mankus(10). Therefore, our main task here was

to develop the interim data structures and associated processes for the parser to cxccute for the

CREATE TABLE, CREATE TYPE, and CREATE VIEW DDL statements. The interim data

structures are used to hold the information provided in the DDL statements until it can bc cntcrcd

into the Data Dictionary.

The basic construct of a relation table definition consists of the table-name and a list of

attribute items or a table-name and a scheme-name. Therefore, the intcrim data structurcs wc

used are called "Table" and "ITEM" and are shown in Figure 4.4. The Table st.ructurc holds Il'

name of the table being defined, an identifier as to whether the table consists of anr ITEMLIST

or a SCHEME name, a pointer to an ITEM structure which is the beginning of tie item-list if thc
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CREATE TABLE COMP
(DNO INT 1,
DNAME CHAR 32,
LOC CHAR 24,
(TABLE EMP

(ENO INT 1,
ENAME CHAR 32,
SAL FLOAT 4,
(TABLE CHILDREN

(CNAME CHAR 24,
DOB CHAR 7)))));

Figure 4.5. Sample CREATE TABLE command

table consists of one, and the name of the scheme if the table is defined by a schcmc name. The

ITEM structure holds the attribute name, the domain of the attribute (TABLE, CHAR, INT, or

FLOAT), the size of the attribute, a pointer to a Table structure when the attribute is a relation

valued attribute, and a pointer to the next ITEM. For example, consider the CREATE TABLE

command inl P~igur 4.5 uic1 to create the relation COMP from Figure 3.15. The resultant Table-

ITEM tree structure generated by parsing this command is shown in Figure 4.6.

The Data Dictionary developed by Mankus(10) consists of two persistant collections which

are tables, a table of relations and a symbol table. The table of relations is a list of the table names,

defined by the CREATE TABLE command, and an index value to identify the type (scheme) of

the relation (see Figure 4.7). The symbol table contains the information on the schemes and thcii

associated attributes, which can be defined by either the CREATE TABLE or CREATE TYPE

commands. When the CREATE TYPE command is used there is no entry in the tablc of relations.

When the CREATE TABLE command is used in conjunction with a non-scheme name dcfinitioni,

a scheme is created with the same name as the table name. An important feature we included in

our Data Diktiundl pruwbz,, ib when a table or sulicne i6 dlufind the ldnit m u Ull'.UG Of it

will be rejected.

Some additional commands have been added to the grammar rules ii parser.y ini oider tu
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provide a formatted output of the table of relations and the symbol table. The first command is

"DUMP", this simply performs a formatted dump of all the information in the relation and s mbol

tables similar to Figure 4.7 and Figure 4.8. The second command is "CIIECK TABLE table-name",

this performs a formatted dump of the symbol table only for the table identified by table-name. If

the table-name is left out a dump of the relation table is performed (Figure 4.7). The symbol table

dump in Figure 4.8 was created by the command "CIIECK TABLE COMP". The last command

is "CIIECK TYPE scheme-name", this performs a formatted dump of the symbol table only for

the scheme identified by scheme-name.

The CREATE TABLE tree in Figure 4.6 is used to generate an entry in the Table of Relations

and the Symbol Table entries as seen in Figure 4.7 and Figure 4.8 respectively. T1lo ]I I Type

Index in Figure 4.7 identifies the relation COMP to have a schcme COMP defined by I'4DEX 42 in

Figure 4.8. The relation valued attribute EMP is identified to have a scheme EMPs with INDE.

value 52 by the NEST INDEX, the parent relation COMP identified by the PARENT .ude.x va .e

42, and 4 attributes identified by the NUMB value. The SCHEME EMPs was automaticall) created

on-the-fly to provide a scheme type name for the EMP relation valued attribute, whi( h was defined

on-the-fly by the CREATE TABLE command in Figure 4.5.

An example of a table definition using schemes can be seen in Figure 4.9 for the EMPLOYEE

relation found in Figure 3.15. The relation was created using the following set of commands.

CREATE TYPE TOY
(NAME CfHAR 32,
COLOR CHAR 32);

CREATE TYPE CHILD
(NAME CHAR 32,
AGE INT 1)
TABLE TOYS TOY;

CREATE TYPE PROJECT
(NAME CHAR 32,
NUMBER INT 2);
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TABLE TABLE TABLE

COMP EMP CHILDREN

ITEM-LIST ITEM-LIST ITEM-LIST

NULL NULL NULL

ITEM ITEM ITEM

DNO ENO d NAMEj

INT INT CHAR

1 1 24

NULL NULL NULL

-IEM ITEM ITEM

DAMI EN AM I DOB

CHAR ~ CHAR CA

ULL NULL

NULL

IITEM ITEM

LOG SAL

CiARl FLOAT

NUL NUL

(iTEM ITEM

TAB TAB

TABLE TABLE

NULL. ~iiV

Figure 4.6. CREATE TABLE Tree
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Table Of Relations

Rel Index Rel Name Rel Type Index

0 EMP 10
1 DEPT 16

2 COMPANIES 20
3 VIEWD 44

4 COMP 42

5 EMPLOYEE 10

Figure 4.7. Sample Pettion Table

Dump of Symbol Table for TABLE: COMP

INDEX NAME LEVEL DOMAIN NUMB PARENT NEST INDEX

42 COMP SCHEME ON.THE.FLY 4 -1 -2
50 DNAME ATTR CHAR 32 42 -2
43 DNO ATTR INT 1 42 -2

51 LOC ATTR CHAR 24 42 -2
79 EMP ATTR PREVDEFINED 4 42 52
52 EMPs SCHEME ONTHEFLY 4 -1 -2
54 ENO ATTR INT 1 52 -2
55 ENAME ATTR CHAR 32 52 -2
56 SAL ATTR FLOAT 4 52 -2
78 CHILDREN ATTR PREVDEFINED 2 52 75

75 CHILDRENs SCHEME ONTHEFLY 2 -1 -2
76 CNAME ATTR CHAR 24 75 -2

77 DOB ATTR CHAR 7 75 -2

Figure 4.8. COMP Symbol Table
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bump of Symbol Table for TABLE: EMPLOYEE

INDEX NAME LEVEL DOMAIN NUMB PARENT NEST INDEX

10 EMPLOYEE SCHEME ONTHEFLY 5 -1 -2
11 NAME ArTR CHAR 32 10 -2
12 AGE ATTR INT 1 10 -2
13 DNO ATTR INT 2 10 -2
14 CHILDREN ATTR PREVDEFINED 3 10 3

3 CHILD SCHEME ONTHEFLY 3 -1 -2
4 NAME ATTR CHAR 32 3 -2
5 AGE ATTR INT 1 3 -2

6 TOYS ATTR PREVDEFINED 2 3 0
0 TOY SCHEME ONTHEFLY 2 -1 -2
1 NAME ATTR CHAR 32 0 -2

2 COLOR ATTR CHAR 32 0 -2
15 PROJECTS ATTR PREVDEFINED 2 10 7
7 PROJECT SCHEME ONTHEFLY 2 -1 -2
8 NAME ATTR CHAR 32 7 -2
9 NUMBER ATTR INT 2 7 -2

Figure 4.9. Sample Symbol Table with nested Schemes

CREATE TABLE EMPLOYEE
(NAME CHAR 32,
AGE INT 1,
DNO INT2,
(TABLE CHILDREN CHILD),
(TABLE PROJECTS PROJECT));

The CHILDREN, TOYS, and PROJECTS relation valued attributes were previously defined as

schemes (CHILD, TOY, PROJECT) identified by the NEST INDEX values (3, 0, 7), and these

scheme names were used to define the relation valued attributes in the CREATE TABLE command.

The DML statements DROP TABLE and DROP TYPE are implemented by using the

table-name or scheme-name to search the relation table and symbol table and remove the table

and scheme along with the attributes (children) of the scheme. If a table exists in the relation

table that is of the scheme type to be dropped, an error condition is raised and the schecie is nut

deleted. This is also true if a relation valued attribute is defined to have the scheme type to be
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SQL-QUERY
type

function

select-list
from-list

where-list
new.name

Figure 4.10. The SQL.QUERY node structure

dropped. For example, an attempt to drop tH CHILD scheme in the EMPLOYEE symbol tablc

would generate an error condition because it is utilized by tile EMPLOYEE scheme.

.. ,4 SQL/NF Query Tree

The basic construct of an SQL/NF query statement is the three clauses SELECT, FROM

(which contain elements separated by commas) and WHERE (which contain elements separated

by AND or OR). Therefore, the data structures we used for the SQL/NF query tree consist of

an SQLQUERY node, SELECT-NODE, FROM-NODE, and WHERENODE to represent each

element of their associated clause. These nodes are generated by associated procedures that arc

executed by the parser as the SQL/NF query statements are parsed and grammar rules are recog-

nized.

The SQLQUERY node (Figure 4.10) contains an identifier to indicate what type of query

expression it is (NEST, UNNEST, QUERY-SPEC = SFW query expression , or FUNC.QE =

query expression with a function), the function name associated with the query expression if typC

= FUNC.QE, a pointer to the first SELECT-NODE of a select node list, a pointer to the first

FROMNODE of a from node list, a pointer to the first WIIERE.NODE of a where node list,

and the new column nam; of an AS clause. If select-list = NULL then the query expression is

a "SELECT A LL FROM.. ." query. If the where-list = NULL then the query has no WHERE

clause. When type = (NEST or UNNEST) the FROM.NODE contains the table-name and the
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SELECT-NODE
type
attr

reference
nest
next

Figure 4.11. The SELECT-NODE structure

FROM.NODE
type
name
nest
next

Figure 4.12. The FROM-NODE structure

SELECT-NODE contains the column-list.

The SELECT.NODE (Figure 4.11) contains an identifier to indicate what type of element

in the SELECT clause it is (COLUMN-SPEC = attribute name, or QUERY.EXP = nested query

expression), a pointer to an ATTRDESC data structure1 which holds the attribute name if type

= COLUMN-SPEC, the reference name (eg. ref-name.attr-name) if one is given, a pointer to an

SQLQUERY node if type = QUERYEXP, and a pointer to a SELECTNODE which contains

the next element of the SELECT clause.

The FROMNODE (Figure 4.12) contains an identifier to indicate what type of element

in the FROM clause it is (TABLE-NAME or QUERY.EXP), the name of the table if type =

TABLENAME, a pointer to an SQLQUERY node if type = QUERYEXP, and a pointer to a

FROMNODE which contains the next element of the FROM clause.

The WIIERE.NODE (Figure 4.13) contains an identifier to indicate what type of element in

the WIHERE clause it is (PRED = predicate, or QUERY.EXP), a pointer to it I'RCDNOLi.E data

stiucturel which contains the predicate information if type = PRED, a pointer to an SQLQUEiIfY

'This data structure is used by the Colby algebra tree and defincd in Section ,1.5.
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WHERE-NODE
type
pred
query
next

Figure 4.13. The WHERE-NODE struture

node if type = QUERY.EXP, and a pointer to a WHERE-NODE which contains the next element

of the WIIERE clause.

Now to see how it is all put together, consider the following query statement:

SELECT DNO, NAME
FROM DEPT, EMP
WIERE DNAME = "MKT" AND AGE > 30

AND DEPT.DNO = EMP.DNO;

The query tree ini Figure 4.14 is the result of parsing the above SQL/NF query. The empty blocks

in the ATTRDESC and PREDNODE data structures are filled in when converting the SQL/NF

query tree to the Colby algebra tree. To see how a nested query statement in the SELECT cAause

would look in an SQL/NF query tree, consider the following query statement:

SELECT (SELECT SAL
FROM EMP
WHlERE ENAME = "SMITH")

FROM COMP;

The query tree in Figure 4.15 is the result of parsing the above SQL/NF query. The nested

query in the SELECT clause is identified i. the query tree by the "nest" element of the top level

SELECT-NODE which is of the type QUER,.EXP. The empty blocks in the ATTRDESC and

PRED.NODE data structures ar,. filled in when converting the SQL/NF query tree to the Colby

algebra tree.

The BNF definitions for the structured queries (NEST and UNNEST), rCelUiirc all additiolial

data structure be used, in conjunction with the parser, for holding the informatiwi of a "culhnjl li.t"

as shown in Figure 4.16. The COLSPECNODE contains a column-name, a r'ctciicce-ndmu if'ouc
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SQL.QUERY
QUERY-SPEC SELECT.NODE

NULL COLUMN-SPEC A'rTHDESC

FROM-NODE - 0 DNO
TABLE.NAME - NULL

DEPT NULL
NULL NULLVALUE

WHERENODE PREDNODE

FROM-NODE P -- PRED =

Tigure 4 4 UE SELECTNODE

ABE AM E - TULL COLUMNSPEC ATTDES

NULL L NULL

NULL DNAME NL

NUL NULL

R CHAR NULL VALUE

I"MIKT"

WHERE.NODE PRED-NODE

PRED >
-- TRUE

NULL NULL

L

AGE

NULL

R INT

WIHERE-NODE PRDND

r ALSE

NULL ]DEPT

DNO

EMP
R

Figure 4.14. SQL/NF Query ree
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SQLQUERY SELECTNODE

QUERY.SPEO QUERY.EXP
FROMNODE NULL NULL

TABLE.NAME
NULL

COMP

NULL NULL NULL
NULL NULL

SQL-QUERY

QUERY-SPEC SELEONODE

FROM-NODE NULL COLUMN.SPEO ATTRDESC

TABLENAME SAL

EMP NULL

NULL NULL NULL

NULL NULL VALUE

WHERE.NODE PRED.NODE
PRED=

-- TRUE

NULL NULL

L

ENAME

NULL

Figure 4.15. SQL/NF nested Query Tree
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name
telname

next

Figure 4.16. The COLSPEC.NODE structure

QUERY
OPERATOR

argument
input[LEFT] I input[RIGHT]

Figure 4.17. The QUERY node structure

is used, and a pointer to a COLSPECNODE which is the next element in the colun list. Once

the column-list structure is complete, it is translated into a select-list as part of a SQLQUERY

node.

4.5 Colby Algebra Query Tree process

The basic structure of the Query tree was established as part of the Thesis effort by Mankus(10),

with some additions made to several of the tree components. The tree consists of a series of QUERY

nodes linked together, along with supporting data structures, to logically provide an access proce-

(lure to a database with respect to the relational operators of the Colby Algebra. Each QUERY

node represents a relational operator in the Colby relational algebra.

The QUERY node (Figure 4.17) contains an identifier to indicate the operator (SELECT,

PROJECT, PRODUCT, NEST, UNNEST) for the query expression, a nested ARGUMIENT struc-

hire, and a pair of pointers to additional input QUERY nodes which make up the tree strnctuie.
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ARGUMENT
name

reltype
new-name

pred
list

Figure 4.18. The ARGUMENT structure

LIST
attr

condl
sublist

next

Figure 4.19. The LIST node structure

The input QUERY nodes identified with LEFT and RIGHT are both required if the OPERA-

TOR = PRODUCT, because a Cartesian-product is a binary operation. Only the LEFT input

QUERY node is used for the remaining operators identified earlier. When other binary operators

(UNION, DIFFERENCE, INTERSECTION) are implemented, both input QUERY nodes will also

be required.

The ARGUMENT structure (Figure 4.18) contains information for the QUERY node operator

and consists of the relation name, the relation scheme type, the new nime of the bubrclatiun foi thc

NEST operator, a pointer to a PREDNODE which contains selection condition information, and

a pointer to a LIST node which is the first node of the attribute list. Depending on the QUERY

node operator and location in the Query tree, different elements in the structurc will or will not be

used.

The LIST node (Figure 4.19) is used to maintain information of attributes to be projected or

navigated across to reach nested attributes. The node is used to construct the Scni r Ls!, P,'ojc'

List, Nest List, and Unnest List for the Colby Algebra operators. It consists of a pointer to an

ATTRDESC structure which contains information about the attribute, a l)ointCr to a PREIDNODE
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ATTRDESC
name
type
size

value u-flag
data-type

rvatype
parentrel

Figure 4.20. The ATTRDESC structure

PREDNODE
oper

constant.on-right
left ref-name

u-flag
op-type

right reLname
u-flag

op.type

Figure 4.21. The PREDNODE structure

structure which contains condition criteria if the attribute is a relation valued attribute, a pointer

to a LIST node which identifies a nested list of attributes for the relation valued attribute of the

current LIST node, and a pointer to a LIST node which is the next item in the List for the QUERY

node.

The ATTRDESC structure (Figure 4.20) contains all the information on an attribute. It con-

sists of the name of the attribute, the domain of the attribute (CIIAR, INT, FLOAT, PREVDEFINED),

the size of the attribute identifies the number of bytes (CIIAR, INT, FLOAT) or the number of

nested attributes (PREVDEFINED), a nested VALUE structure that is used for storing tuple

information-2, the scheme-name for a relation valued attribute, and the name of the paleit iulatiuii

for the attribute.

The PREDNODE contains the information l)ertaining to a selection conditionl or predieate

2This structure is cxplained further in Section 4.6.
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for the associated ARGUMENT or LIST node. It consists of an identifier to inidicate the operator

for the node (=, ! =, <, >,:5, >_, NOT, AND, OR), an identifier to indicate if the right hand side

of the predicate contains a constant value (eg. "SMITII", 123), and two operand nested structures

(left and right) which correspond to the left and right side of the predicate. The operand structure

consists of the reference name for the attribute used for that side of the prcdicatc, a flag to inlicate

what type of value is used for that side of the predicate (PRED, CHAR, INT, FLOAT), and a

nested union structure which contains the actual value of the type identified by the flag. The

PRED type value is used when the operator for the pedicate is one which links two predicates at

the current level in the Query tree together such as NOT, AND, or O1.

4.5.1 SQL/NF to Coli'y Algebra translation. The three clauses (SELECT, FROM, WIIERE)

of an SQL/NF query3 can be translated into a Colby Algebra query using the relational operators4

(select, project, and cartesian-product) with little difficulty. The attribute-list of the SELECT

clause corresponds to the project-list of the Projection operator. The predicate-list of the VIIEJRE

clause corresponds directly to the Con2ition of the Selection operator. The relation-list of the

FROM clause corresponds to the Relations of the Cartesian-product operator. The attributc-list

of the SQL/NF NEST clause corresponds to the Nest-list of the Colby Nest operator, and the

same for the UNNEST clause and N-st operator. When a nested SFW-expression appears ill the

SELECT clause, the relation-list of the nested FROM clause along with the attribute-list of the

nested SELECT clause provides the path and attributes for the project-list, and the relation-list

provides the path for the select-list. The nested select-list condition is obtained from the nebtcd

WIIERE clause.

The translation of the SQL/NF query tree in Figure 4.14 which was generated friom the

fol!owing SQL/NF query statement:

3
Sce Section 3.2.2
4See Appendix B
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SELECT DNO, NAME
FROM DEPT, EMP
WHERE DNAME = "MKT" AND AGE > 30

AND DEPT.DNO = EMP.DNO;

Would produce the Colby Algebra query tree in Figure 4.22, and represents the following Colby

Algebra query:

,((DNO, NAME) '(x ('(DEPTDNAME = "MKT"), U(EMPAGE> 30))DEPT.DNO = EMP.DNO))

The translation of the SQL/NF query tree in Figure 4.15 which was gencrated frum the folluwiiig

SQL/NF query statement:

SELECT (SELECT SAL
FROM EMP
WIIERE ENAME = "SMITH")

FROM COMP;

Would produce the Colby Algebra query tree in Figure 4.23, and represents the following Colb,

Algebra query:

,r((EMP(SAL)) a(COMP(EMPENAME = "SMITH")))

The translation process has been given the additional responsibility of performing error check-

ing on the input query statement. All attribute names used in the SELECT and 117IE RE clauses

are checked to verify the correct parent relation name exists within the assoc ,ixd FROM clausu.

The verification is accomplished by checking the symbol table. When the attribuitc ii the SQL/N 13F

query tree is matched to a relation name then the attribute is added to the Colb 3 qtucry ticu alowig

with the information required for the ATTRDESC. Once all the relation names of the FROM

clause have been used for attribute testing, a final check is made to see if all attributes haxc bcc

translated to the Colby query tree, if not, an error condition is set.

4-19



ARGUMENT

QUERY empty

PROJECT empty

ar mcnt NULL

NULL NULL LIST ATTRDESC

DNO

NULL INT

NULL I

VALUE
ARGUMENT

enipty

clupty PRED-NODE
arguinent NULL

LIST A rTRDESC

NULL FALSS - - N AM 13,

.DEPT NULL CHAR

L INT NULL 32

DNO NULL VALUE

EMP NIA
R INT EMP

DNO

ARGUMENT ARGUMENT

QUE DEPT UERY

DEPT SELECT EMP

NULL arguinent NULL

NULLI NULLN,,"L
NULL

PRED-NODE PnED-NOD-

>

TRUE TRUE
NULL NULL

L CHAR L INT

DNAMEI AGE

CH

ENULL NULL
R CHAR R INI

" "MJ T"MI(7t 1 30__

Figure 4.22. Sample Colby Query 'Ree
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ARGUMENT
UERY cillpty

jRY

PROJECT cillpty

ar unient NULL ATTRDESC

NULL NULL LIST EMP

PRrVDEF
NULL

VALUE
NULL/ARGUMENT Ur

COMP

SELECT COMP

argument NULL LIST ATTRDESC

NULI] NULL NULL SAL

FLOAT
NULL,

ATTRDESC NULL VALUE
NULLLIST EMP

PRET;-NODE NIA
PREVDEF Emp

4
-- TRUE NUL

NULL NULL VALUE

EMPsIj CHAR
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NULL

C14AR

J'SMITII" 11

Figure 4 23. Nested SM-expression in Query 'Ree
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name
type

index
numb

parent-name
parent-index

next

Figure 4.24. The NEST.TABLE.NODE structure

4.5.2 NEST and UNNEST Process. The NEST and UNNEST clauses present a problem

%.hen trying to match attributes and their parent relation by checking the symbol table. This iS &W

to the nature of the commands to restructure the relation. The solution to this problem biought

about the requirement for a temporary symbol table to contaih the new rclatiun valued attributes

and the nested attributes new parent information.

The NEST.TABLE.NODE structure (Figure 4.24) is used to provide this temporary symbol

table. It consists of the name of the attribute, what operator type (NEST or UNNEST) has

changed the parent of the attribute, the symbol table INDEX value for the attribute, the symbol

table NUMB value for the attribute, the new parent name for the attribute, the new parent INDEX

value from the symbol table, and a pointer to the next NEST.TABLENODE in the temporary

symbol table. When the attribute is a relation valued attribute created by the NEST clause the

"numb" value is the number of attributes in the ON clause.

When a NEST or UNNESTclause is encountered in the SQL/NF query the temlporary symbol

table is created. The error checking process takes place during the creation of the tempo ary 6s mubol

table. Now when an attribute is not found in the permnanent symbol table, the temporary b nubol

table is checked and the ATTRDESC information is provided if the attribute is found.

Let us consider the following query using the NEST clause on the COMP relation of Figure '1.25.
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COMP
DNO I DNAME ENO SAL E 4NAME

Figure 4.25. COMP relation table

SELECT DNO, (SELECT ENO
FROM EMP)

FROM (NEST ENO, SAL, ENAME
ON COMP AS EMP);

The Colby query tree generated by the above SQL/NV query is shown in Figure 4.26 and translates

to the following Colby Algebra query:

7r((DNO, EM P(ENO)) v(COMP(ENO, SAL, ENAME) -- EMP))

The UNNEST clause is translated into a query tree almost identical to the NEST operator

query tree, with the exception being no new-name is assigned in the ARGUMENT.

.f.6 Extensions to the Colby Query Tree

In order to provide for non-relational algebra database operations to be passed on to the

Query Optimizer and subsequent stages in the EXODUS architecture (see Figure 2.5), several

additional values for thw OPERATOR element of the QUERY node were defiued. These extensions

reflect the operations of the DDL and DML statements.

When creating cr dropping a relation table via a CREATE TABLE or DROP TABLE com-

mand, the EXODUS storage manager must be informed of the operation to allocate or deallocate

the relation table. The basic structure of the Colby query tree for these operations is a single

QUERY node with the name of the relation in the ARGUMENT and an OPERATOR value of

CREATE-REL for CREATE TABLE or DROP.REL for DROP TA BLE.
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Figure 4.26. NES' operator Query 'Ree
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EMP
[ENO ENAME (JHILDEN 

UaNAME IB

Figure 4.27. The EMP relation table

A major extension that was developed but not implemented at this time, concerns the DML

commands of STORE, MODIFY, and ERASE. This requirement led to the modification of the

ATTRDESC structure (Figure 4.20) to include a way to store tuple information to be appliel to

the database. The modification as the addition of the "value" nested structure which i9 similar

to the operand structure used in the PRED.NODE (Figure 4.21, The value structure consists of a

flag to indicate what type of value is used for that attribute (CIIAR, INT, FLOAT), and a )tested

7anion structure which contains the actual value of the type identified by the flag. For example, if

we add a tuple to the EMP relation in Figure 4.27 using the STORE command with the following

SQL/NF command:

STORE EMP (ENO, ENAME, CIIILDREN(CNAME, DOB))
VALUES <123, SMITH, (<STEVE, MAY>) >;

The Colby query tree structuee generated by the above STORE command can be seen in Figure 4.28.

Multiple tuples for the nested relation(s) (eg. CHILDREN) are identified in the query tree by adding

,i additional list node (via next) with the ATTRDESC reflecting the bame relation valued attribute

name (CHILDREN) and another sublist with the tuple data. When translating the SQL/NF qucry

trecs for the MODIFY and ERASE commands, the Colby query trees are constructed in a similar

manner.

4 7 Tesling an(d Valid-jon

Upon completion of implementing the Data Dictionary process several relations were created

and deleted (1NF relations, and Nested relations with and without scheme definitions), to test all
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the combinations of the DDL statements that were implemented in the parser, some of the results

were used in Section 4.3.

After implementing the translator, several queries were input to the parser. The Colby query

tree was built for all combinations of the SQL/NF SFW-expressions that were implemented in the

parser. These included SFW queries on top level attributes as well as nested attributes, queries on

multiple relations, and queries utilizing the NEST and UNNEST operators. In order to verify the

QUERY tree structure a set of print procedures were developed to provide a formatted output of

the Colby query tree. Some sample test cases and their results are provided in Appendix D.

,4.7.1 Translator limitations. Testing the capabilities of the translator was limited to a sub-

set of the Query facilities and DDL statements defined in Appendix C.

The Query facilities implemented only include <query spec>, <structured query>, and

<nested query expression>. The <structured query> capabilities are limited to NEST and UNNEST.

The <query spec> capabilities do not include the PRESERVE clause and <predicate> is limited

to <comparison predicate>.

The DDL statements implemented include <schema>, <scheme>, and <drop statement>.

These statements are limited by not including any capabilities dealing with constraints.
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V. Conclusion

5.1- Summary

This thesis effort aczomplished several objectives, resulting in-the design and implementation

of an SQL/NF to Colby Algebra query translator as part of the Triton-system- using the EXODUS

tool kit. The main objectives included developing:

1. A parser to recognize SQL/NF statements and execute associated processes.

2. A-persistent data dictionary and the associated processes to create and-maintain-it.

3. A query tree structure in the form of the SQL/NF query expressions.

4. A translation pocess to convert the SQL/NF query tree into the equivalent Colby-relational

algebra query tree.

5. A process to walk down the Colby query tree and display -the-contents-at each -node.

The parser was implemented using the UNIX tools-of-LEX andYACC. The key words in the

BNF for SQL/NF were defined in the lexical analyzer created-by LEX and the -BNF definitions

were translated into the appropriate grammar definitions-for YACC. Print-statements-were added

to each grammar rule to show the parsing process for recognizing the components- of-the SQL/NF

statements.

The composition of the Data Dictionary we used was developed-as-part of the- thesis work by

Mankus(I0). This design took advantage of the persistence featureof EXODUS which allowed the

data dictionary to remain in the storage manager-between program executions. The-data structures

and associated processes required to interpret and implement-the SQL/NF DDL statements for use

with the data dictionary were developed. These processes are called by the parser as the DDL

statement is recognized.
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A query tree structure was developed to represent the structure of the-SQL/NF query state-

ment. Each query node consisted of three main elements which reflect the-select, from, and where

clauses of the SQL/NF query statement. The-processes-were developed- to-build the query tree as

the parser recognized the components of each of the statement clauses. The design- included provid-

ing for nested queries within any one of the clauses. Only-a subset of the SQL/NF query statements

were implemented, mainly the ones that can be directly translated into -the Colby relational algebra.

The SQL/NF to Colby Algebra translation process was developed-using the SQL/NF query

tree as input and producing the equivalent relational algebra-query tree as output. The query

nodes and the tree structure resemble a general structure-required by the query optimizer stage in

-the -EXODUS architecture. The query tree structure for- translating-DML-statements- was designed

but not implemented. One of the main tasks of the translator- process isto-check thecomponents

of the-SQL/NF query tree for legal queries by-matching relations and-their attributes- identified in

-the query statement. This matching process is accomplished via-procedures-developed-for-checking

the contents of the data dictionary.

As part of the testing process to verify the composition-of the-Colby query-tree a-group of

print procedures were developed to walk down the tree and-outputeaclofthe elements of the data

structures for each query node. These print procedures were developed so-as-to correspond-directly

with each of the data structures associated-with the QUERY node.

5.2 Future Recommendaiions

Enhancements to the current system would begin with-continuing the-implementation of the

DML commands as to enable manipulation of the data inithe database. Tiis-could be followed

by implementing the set operations (UNION, INTERSECTION, DIFFERENCE) between query

expressions. The next major enhancement to the system would be to-extend the relational algebra to

be able to handle query expressions with functions and the predicates of the WHERE clauses "search
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condition" not-implemented in the current sybtem. Finally, enhancements to the Data Dictionary

would include the -addition of table constraint definitions and column constraint specifications.

Serious thought should be given to changing the symbol table into a version which utilizes the

ITEM and Table-data structures (Figure 4.4) and is also persistent.
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Appendix A. YACC and LEX formats

A.1 YA CC

The general format for a YACC specification is:

{declarations}

{rules}

{ programs}

where one-or more sections can be omitted except the first %%. The rules section contains lines of

the type:

name: body;

where the colon and semicolon are YACC punctuation, name is a nonterminal symbol and body- is

a-sequence of zero or more names and literals (A literal consists of characters enclosed in single

quotes.) Nonterminal 'names' are declared in the declaration section as:

%token-namel name2 ...

Grammar rules which have the same left hand side can be rewritten using the vertical bar

'T' instead of rewriting the left hand side, for example:

name: surname;

name: firstname surname;

name: firstname -middlename surname;

can-be-given to-YACC in the format identified in Figure A.1 where surname, firshiamne and md-

dlename-are literals. The statements enclosed by I and } are the actions that are executed-once

the associated rule is satisfied. In each case a different variation of the build-name() procedure is

called-for each rule.
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name: surname

build-name(NULL, NULL, stringl);

I farstname surname

buildname(string1, NULL, string2);

I firstname middlenam surname

build.name(stringi, string2, string3);}

Figure A.1. Example YACC rule

A.2 LEX

Like YACC, the general format for a LEX program is:

{definitions}

{rules)

{ user defined subroutines)

where the definitions and user defined subroutines are optional.

Each regular expression represents the user's control-decision. It is written in the form of

a table, with the regular expressions on the left and LEX actions to the right. The nrmal C

escapes, like \t, and \n, are recognized and the back-slash can be used to escape LEX operators

For example, if the user wants to recognize key words of the SQL/NF query language, the following

LEX rules would be appropriate:
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"SELECT" return (T..SELEGT);

"FROM" return(T..FROM);

"WHERE" return(Li WHERE);

The actions taken are the return of a "token" value for each key word.
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Appendix B. Colby Algebra Definitions

l. Query Formals

1. Selection operator: a(Relationcoaditim (Select List))

2. Projecti3n operator: ir((Project List) Relation)

3. Nest operator: v(Relation (Nest list) -- New Subrelat ion)

4. Unnest operator: p(Relalion(Unnest list))

5. Cartesian. product opcrator: x (Rlationl (JoinPath), Rplation2)

6. Join operator: , (Relationl(Join Path), Relation2)

7. Union operator: uO(REL1,REL2)

8. Differcnce operator: -8 (REL1, REL2)

9. Intersection operator: ne(REL1, REL2)

B.1. Selection (o-).

Let R be a relation scheme.

Then, L is a 'select list' of R if:

1. L is empty.

2. L is of the form (R1,,Li 1  ,L 2, . ., nLn) (1 < n < RAtr(R) j) where ewich Rj is a

relation-valued attribute of R, ci is a condition on Ri, and Li is a select list of 1,.

Let. r be a relation with relation scheme R.
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1. (ro) = {it ' c() = true)

2. u(r(JiC.,Li, R2 2L2,...,=

{t I 3t, E r

(t[Attr(R) - {l 1 , R2 ... , R,}] = tr[Attr(R) - (I 1 R2,..., R,,]])

A(c(fr) = trite)

Al[R1 = a((tr[R[]),,Li) # 0)

A(t[R,,] = o((t,[R.])0 L.) # 0))

where L = (RJ?,Ll, R 2c2L2 ,. .. , L,,) is a select list of Ssibly

empty) select lists of Ri's and c is a condition on R.

B.3 Projection (7r).

Let R be a relation scheme.

Then, L is a 'project list' of R if:

1. L is empty.

2. L is of the form (R L1 , R 2 L 2 ,..., JIL,) where each Ri is an attribute of I? and L, is a project

list of Ri (Li is empty if Ri is an atomic-attribute).

Let r be a relation with relation scheme f.

1. i'(r) - r

2. ir((RiLi,R2 L2 ,...,f&L,,)r) =

{t 1 (37- E r) A (t[Ri] = f(tr, R1 LI)) A ... A (t[R,,] = f(tr, RL,)))

Wvhere At,, RiLi) = 4jfti if fi C- FAttr(ft)

= 7r(Li(t,[R,])) if R E RAttr(f)

where (fIL1 , R2 L2 , .R,L,) is a project h3sl of R.
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B.4- Nest (V).

Let R be a relation scheme.

Then L is a 'nest list' of R if:

1. L-is of the-form (Rl,..., R,,) where each Ri E Aitr(R).

2. L is of the form (RiLi) where Ri E RAttr(R) and Li is a nest list of Rj.

Let r be-a relation with relation scheme R and let A be a new attribute name such that A 3 Attr(R).

1. v(,'(R1 ,. .. ,,)-* A) = {t 13t, E r I

(t[Att,'(R) - {R,,..., R,] = t,(Ath,() - ... ,

(t[A] = {s[fI,...,,) j I sE-r]

(s[Attr(R) - {R,,..., R,,}]=t[tr) ,..,R}))

2. v,(r(RjLi) -- A) It 1-3t,.E -r I

(t[Attr(R) - tRi}] = tr[Att.(/l) - {Ri}])

^(t[Ri] = '(tr[R'Li -- A)))

B.5 Unnest 6'.

-Let k be a relation scheme.

Then, L is an 'unnest list' of R if-

-1. L is of the form (R) where 14 E RAttr(R).

2- L is of the form (RiLl) where Ri E RAttr(?) and Li is an unnest list of R,.
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Let r be a relation with relation scheme R.

1. {(I(R)) = 131 r. I

(t[Attr(R) - {Ri}] = tr[Att,'(R) - {i,}])

^(t[Attr( Ri)] E t,[R,])

2. u(i-(RLi)) = {13t, E ?'I

(t[Attr(R) - {Ri}] = ti,[Attr(R) - {R}])

AQi[Ri] = p(tr[Ri]Li))}

B.6 Join Path.

Let R be a relation scheme.

L is a "join path" of R if:

1. L is empty.

2. L is of the form (RiLi) where Ri is a relation, valued attribute of R (R, E RAtIr(R)) and r,

is a join path of Ri.
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B. 7 Cartesian-Product (x).

Let r and q be two relations with relation schemes R and Q respectively.

1. x(r, q) = {tI 3tr 7-, 3tq E qI

(t[Attr(R)] = tr) A (t[Att,'(Q)] tq))

2. x(,(RiLi), q) = {t I 3tr E 7-1

(ttRi] = x(tr[Ri]Li,q)

A(t[Attr(R) - {Ri)] = tr(Attr((R) - {Ri)])}

where (RiLi) is a join path of R.

We assume that common attributes in R and Q are renamed in order to resolve ambiguity.

B.8 Join (k).

Let r and q be two relations with relation schemes R and Q respectively and let L bc a joiln

path of R.

1. M (,q) = {t3tr E i",3tq E q

(t [RI, . .. , R,] tr[R,,...,R,,] =tq[R,,...,R,11)

^(t[Attr(R)- {/ h..., R-a] = tr[Att,-(lR) - {Ri,,,}]

A(t[Attr(Q) - {R1,..., Rn)] = t,.[Att'(Q) - {R,. . 1,]

where {Rl,..., Ryl} are the common attributes of R and Q.

2. b (r(RI-L,), q) = {t I 3tr E 7'1

(t[R,] = m (trR]Li, q) # 0)
A(t(Altr(R)- {Ri}] - tr[Atr( )- {R}])}
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B.9 Extended Binary Operators.

The following ap~plies to all the binary operators:

1. Let ri and r2 be two relations with relation scheme R.

2. Let k(R) = key(R) U FAttr(R) and let m(R) = RAttr(R) - k(R), w'here key(R) is the set of

attributes which determine the key for R.

B.9.1 Union (U,Ue).

1. U(7'1, 7-2) I t I (t E ri) V (t E r'2)).

2. Ue(ri, r,-) I t I ((t E ri) A (Vt 2 E r*2, t2[k(R)] $ t[k(R)]))

V(Eti E r1 , 3t2 E r2I

(t~k(R)] =tjfk(R)] = t2(k(R)])

A(i[R1] =ue(i1 (R1 ], 2[RJ?]))

A(t[R1 =ue~tl[R1 ],t 2 [Rt])))}

where Ri E m(R) (1 < i < 1).

B.9.2 Difference (...)

1L -(i', r2) I t I (t E ri) V (t 9 r2)).

2. e(rI, r2) I t I ((t E ?'1) A (Vt2 E r'2,t2[k(R)] 0 t~k(R)]))

(t[k(?)I t= t[k(fl)] = t2[k(R)]) A (t1 2)

A(t[RI] = e(ti [ft],1 2(R]))

A(t[R] =-!(t[RI,t 2[Rl])))}
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where Ri E m(R) (1 < i < k)

B.9.3 Intersection cn,ne).

1. fl(rl, 72 ) I t I (t E 7-1) A(t E 12}

2. fc(rIl, 72 ) = t I(3ti E rj, 312 E r2I

(t[k(R)] =tidk(J?)] =t 2 [k(R)])

A(t[Ru] ne(t1 [R1 ],t 2 [R1 )))

A(t[R1] ne(t 1 [R],i2 [R,)))))

wvhere R, E m(R) (1 < i < 1)
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Appendix C. SQL/NP BNF

The following is a modified BNF definition of the Query Facilities, Data Manipulation Lan-

guage (DML), and Data Definition Language (DDL) for SQL/NF. The original version is found in

(13), which used RDL (1) as the baseline definition. A TERMINAL symbol (key word) is idcntificd

as a word consisting of all capital letters. Non-dirtinguished symbols are enclosed with "( )". The

structure "[ ]" indicates an optional entry and the structure ...". . indicates an additional zero or

more repetitions of the pr 'ious entry. Braces are used for grouping in the BNF. Except wherc

modified by braces, sequencing has precedence over disjunction (indicated by "I").

C.1 Ques y facilities

e (query expression) ::= (query spec) I (structured query) I (function) ((query expression))

I (nested query expression) I (query expression) (set operator) (query expression)

* (structured query) ::= NEST (nested query expression) ON (column list) [AS (column name)]

I UNNEST (nested query expression) ON (column list)

I ORDER (nested query expression) BY (sort spec) ...

* (sort spec) ::= {(unsigned integer) I (column name)) [ASO I DESC]

9 (query spec) ::= (select from spec) [WHERE (search condition) [PRESERVE (table list)]]

* (select from spec) ::= SELECT (select list) FROM (table list) I (table name)

* (select list) ::= ALL I (select spec list)

* (select spec list) ::= (select spec) [{,(select spec)) ... ]

o (select spec) ::= (column expression) I (reference name).ALL

-(column expression) ::= (value expression) [AS (column name)]

o (table list)-::= (table spec) [{, (table spec))...]
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* (table spec) (nested query expression) [AS (column name)]

* (search condition) (boolean term) I (search condition) OR (boolean term)

* (boolean term) (boolean factor) I (boolean term) AND (boolean factor)

9 (boolean factor) [NOT] (boolean primary)

* (boolean primary) (predicate) j ((search condition))

* (predicate) ::= (comparison predicate) I (between predicate) I (in predicate) (like predicate)

I (exists predicate) I (null predicate)

• (comparison predicate) (value expression) (comp op) (value expression)

e (comp op) = < I> I I = I [NOT] ELEMENT OF I[NOT] CONTAINS

I [NOT] SUBSET OF

* (between predicate) (value expression) [NOT] BETWEEN (value expression) AND

(value expression'

* (in predicate) (value expression tuple list) IN (nested query expression)

e (value expression tuple list) ::= (value expression)

I < (value expression) [{, (value expression)} ... ]>

* (like predicate) ::= (not further defined)

* (exists predicate) ::= EXISTS (nested query expression)

e (null predicate) ::= (column spec) IS [NOT] NULL

* (nested query expression) ::= (table name) I ((query expression))

* (column list) ::=-[ALL BUT] (column spec) [{, (column spec)).-]

9 (function)::= MAX I MIN I AVG I SUM I COUNT I DISTINCT I SUBSUME

* (set operator) ::= UNION I DIFFERENCE I INTERSECT
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9 (value expression) (term) I (value expression) {+ I-1 (term)

* (term) ::= (factor) I (term) {* I) (factor)

a (factor) ::= [+I (primary)

* (primary) ::= ((query expression)) I (value spec) I (column spec) I ((value expression))

I (function) ((query expression))

* (value spec) ::= (literal' I NULL I ((tuple literal))

* (literal) ::= (character string literal) I (numeric literal) I (tuple literal) I (don't care literal)

* (tuple literal) < (value spec) [{, (value spec)) ... ] >

* (column spec) [{(reference name).) .](column name)

C.2 DML

* (dm statement) (store statement) I (modify statement) I (erase statement)

* (store statement) ::= STORE (table name) [((attribute list))] {VALUES (tuple literal)

I (table name) I (query spec) I (structured query) I (function) ((query expression))

I (query expression) (set operator) (query expression) }

o (attribute list) ::= (column name spec) [{,(colun.n name spec)) ... ]

* (column name spec) ::= column name I column name (( attribute list ))

o (modify statement)::= MODIFY (table name) [AS (reference name)] SET (set clause).,

[WHERE (search condition)]

o (set clause) ::= (column name) = {(value expression) I ((dmi statement)))

o (erase statement) ..= ERASE (table name) [AS (referece namc)][WiERE (swi d, ,unditiuii)j
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C.3 DDL

* (ddl statement) (schema) I (scheme) I (drop statement)

* (schema) ::= C'.EATE {(table definition) I (view definition))

* (table definition) ::= TABLE (table name) {(tabb, element) I (scheme name))

* (table element) ::= ((column specification list)) I CONSTRAINTS (table constraint definition)

e (column specification list) ::= (column specification) [{, (column specification))...]

* (column specification) ::= (column definition) I ((table definition))

a (column definition) ::= (column name) (data type) [(column constrai.t spec)...]

[(default clause)]

* (data type) ::= (character string type) I (numeric type)

* (column constraint spec) ::= (not null clause) I (unique clause) I (references clause)

I (check clause)

* (not null clause) ::= NOT NULL

e (unique clause) ::= UNIQUE

* (references clause) ::= REFERENCES (column spec) [(update rule)][(delete rule))

* (check clause) :-= CHECK (search condition)

* (default clause) ::= DEFAULT (literal)

• (table constraint definition) ;:= (unique constraint definition) (referential constraint definition)

I (check constraint definition)

e (unique constraint definition) ::= UNIQUE (column list)

* (referential constraint definition) ::= REFERENCES (column list) WITH (column list)

[(update rule)][(delete rule)]
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e (check constraint definition) ::= (check clause) [(defer clause)]

9 (update rule) ::= (action) MODIFY

* (delete rule) ::= (action) ERASE

e (action)::= CASCADE I NULLIFY I RESTRICT

* (defer clause) ::= IMMEDIATE I DEFFERED

* (view definition) ::= VIEW (table name) AS (query expression)

* (scheme) ::= CREATE TYPE (scheme definition)

* (scheme definition) ::= (scheme name) (table element)

9 (drop statement) ::= DROP TABLE (table name) j DROP TYPE (scheme name)

I DROP VIEW (table name)
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Appendix D. SQL/NE test cases

D.1 Data Dictionary

1. QUERY STATEMENT FOLLOWS:

CHECK TABLE;

Table Of Relations

Rel Index Rel Name Rel Type Index

0 NEWEMP 10
I DEPT 16
2 COMPANY 33
3 VIEWD 44
4 EMP 10
5 COMPANIES 20
6 SHORTEMP 49
7 RELI 50
8 DOMPV 48
9 NEV 71
10 DEPTN 75

D-1



2. QUERY STATEMENT FOLLOWS:

CHECK TABLE NEWEMP;

Dump of Symbol Table for TABLE: NEWEMP

INDEX NAME LEVEL DOMAIN NUMB PARENT NEST INDEX

10 EMP SCHEME ONTHEFLY 5 -1 -2

11 NAME ATTR CHAR 32 10 -2
12 AGE ATTR INT 1 10 -2
13 DNO ATTR INT 2 10 -2
14 CHILDREN ATTR PREVDEFINED 3 10 3
3 CHILD SCHEME ONTHEFLY 3 -1 -2
4 NAME ATTR CHAR 32 3 -2
5 AGE ATTR INT 1 3 -2
6 TOYS ATTR PREVDEFINED 2 3 0
0 TOY SCHEME ONTHEFLY 2 -1 -2
I NAME ATTR CHAR 32 0 -2
2 COLOR ATTR CHAR 32 0 -2
15 PROJECTS ATTR PREVDEFINED 2 10 7
7 PROJECT SCHEME ONTHEFLY 2 -1 -2
8 NAME ATTR CHAR 32 7 -2
9 NUMBER ATTR INT 2 7 -2

3. QUERY STATEMENT FOLLOWS:

CHECK TABLE EMP;

Dump of Symbol Table for TABLE: EMP

INDEX NAME LEVEL DOMAIN NUMB PARENT NEST INDEX

84 EMP2 SCHEME ONTHEFLY 4 -1 -2
85 ENO ATTR INT 1 84 -2
86 ENAME ATTR CHAR 32 84 -2
87 DNO ATTR INT 1 84 -2
8S SAL ATTR FLOAT 4 84 -2
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D.2 SFW-expressions

1. QUERY STATEMENT FOLLOWS:

SELECT ENODNAME
FROM DEPT,EMP
WHERE ENAME = "SMITH";

QUERY node follows:
Query node Operator is: PROJECT
Arg name
Arg reltype =
ARG list follows:
Attrdesc name = DNAME
Attrdesc type = CHAR
Attrdesc size = 32
Attrdesc parentrel = DEPT
Next list follows:
Attrdesc name = ENO
Attrdesc type = INT
Attrdesc size = 1
Attrdesc parentrel = EMP
Left input node follows:

QUERY node follows:
Query node Operator is: CARTESIAN PRODUCT
Arg name =
Arg reltype =
Left input node follows:

QUERY node follows:
Query node Operator is: SELECT
Arg name = DEPT
Arg reltype = DEPARTMENT
Right input node follows:

QUERY node follows:
Query node Operator is: SELECT
Arg name = EMP
Arg reltype = EMP2
Arg pred follows:
Pred oper is =
Pred constant-on-right = TRUE
LEFT pred operand follows:
Op-type is CHAR: ENAME
RIGHT pred operand follows:
Op-type is CHAR: "SMITH"
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2. QUERY STATEMENT FOLLOWS:

SELECT ENAME
FROM (SELECT ALL

FROM EMP,DEPT
WHERE DNO < ENO)

WHERE DNAME = "SHIPPING";

QUERY node follows:
Query node Operator is: PROJECT
Arg name =
Arg reltype =
ARG list follows:
Attrdesc name = ENAME
Attrdesc type = CHAR
Attrdesc size = 32
Attrdesc parentrel = EMP
Left input node follows:

QUERY node follows:
Query node Operator is: CARTESIAN PRODUCT
Arg name =
Arg reltype =
Left input node follows:

QUERY node follows:
Query node Operator is: SELECT
Arg name = EMP
Arg reltype = EMP2
Arg pred follows:
Pred oper is <
Pred constanton.right FALSE
LEFT pred operand follows:
Optype is CHAR: DNO
RIGHT pred operand follows:
Optype is CHAR: ENO
Right input node follows:

QUERY node follows:
Query node Operator is: SELECT
Arg name = DEPT
Arg reltype = DEPARTMENT
Arg pred follows:
Pred oper is
Pred constantonright = TRUE
LEFT pred operand follows:
Op-type is CHAR: DNAME
RIGHT pr ,perand follows:
Op-typj is IAR: "SHIPPING"
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3. QUERY STATEMENT FOLLOWS:

SELECT ALL
FROM DEPTNEWEMPCOMPANY
WHERE DEPT.DNO = NEWEMP.DNO
AND DEPT.LOC = COMPANY.LOC
AND AGE>35;

QUERY node follows:
Query node Operator is: CARTESIAN PRODUCT
Arg name =
Arg reltype =
Arg pred follows:
Pred oper is AND
Pred constant-on.right = FALSE
LEFT pred operand follows:
Op.type is PRED:
Pred oper is =
Pred constanton.right = FALSE
LEFT pred operand follows:
Op.type is CHAR: DNO
With reference name DEPT
RIGHT pred operand follows:
Op.type is CHAR: DNO
With reference name NEWEMP
RIGHT pred operand follows:
Op-type is PRED:
Pred oper is =
Pred constant-onright = FALSE
LEFT pred operand follows:
Op.type is CHAR: LOC
With reference name DEPT
RIGHT pred operand follows:
Op.type is CHAR: LOC
With reference name COMPANY
Left input node follows:

QUERY node follows:
Query node Operator is: SELECT
Ar& name = DEPT
Arg reltype = DEPARTMENT
Right input node follows:

QUERY node follows:
Query node Operator is: CARTESIAN PRODUCT
Arg name =
Arg reltype
Left input node follows:

QUERY node follows:
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Query node Operator is: SELECT
Arg name = NEWEMP
Arg reltype = EMP
Arg pred follows:
Pred oper is >
Prod constantonright = TRUE
LEFT pred operand follows:
Op-type is CHAR: AGE
RIGHT pred operand follows:
Op.type is INT: 35
Right input node follows:

QUERY node follows:
Query node Operator is: SELECT
Arg name = COMPANY
Arg reltype = COMP

4. QUERY STATEMENT FOLLOWS:

SELECT DNAME,(SELECT ENAME
FROM EMP
WHERE SAL>10000)

FROM COMPANY
WHERE LOC = "CHICAGO";

QUERY node follows:
Query node Operator is: PROJECT
Arg name =
Arg reltype =
ARG list follows:
Attrdesc name = DNAME
Attrdesc type = CHAR
Attrdesc size = 20
Attrdesc parentrel = COMPANY
Next list follows:
Attrdesc name = EMP
Attrdesc type = PREVDEFINED
Attrdesc rvatype = EMPs
Attrdesc size = 4
Attrdesc parentrel = COMPANY
Sublist follows:
Attrdesc name = ENAME
Attrdesc type = CHAR
Attrdesc size = 24
Attrdesc parentrel = EMP
Left input node follows:

QUERY node follows:
Query node Operator is: SELECT
Arg name = COMPANY
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Arg reltype =COMP
Arg prod follows:
Prod oper is
Prod constant-on..right TRUE
LEFT prod operand follows:
Op-.type is CHAR: LOC
RIGHT prod operand follows:
Op-.type is CHAR: "CHICAGO"
ARG list follows:
Attrdesc name = EMP
Attrdesc type = PREV-.DEFINED
Attrdesc rvatype =EMPs
Attrdesc size = 4
Attrdesc parentrel = COMPANY
List cond follows:
Prod oper is >
Prod constant.on.right =TRUE
LEFT prod operand follows:
Op-.type is CHAR: SAL
RIGHT prod operand follows:
Op-.typo is INT: 10000

5. QUE RY STATE ME NT FOLLOWS:

SELECT DNAME,DNO, (SELECT ENAME,ENO, (SELECT CNAME
FROM CHILDREN)

FROM EMP
WHERE SAL >1000)

FROM COMPANY
WHERE LOC = "CHICAGO" AND DNO = 456;

QUERY node follows:
Query node Operator is: PROJECT
Arg name
Arg reltype
ARG list follows:
Attrdesc name =DNAME
Attrdesc type = CHAR
Attrdesc size = 20
Attrdesc parentrel COMPANY
Next list follows:
Attrdesc name = DNO
Attrdesc type = INT
Attrdesc size =2
Attrdesc parentrel =COMPANY
Next list follows:
Attrdesc name = EMP
Attrdesc type = PREV-.DEFINED
Attrdesc rvatype =EMPs
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Attrdesc size = 4
Attrdesc parentrel = COMPANY
Sublist follows:
Attrdesc name = ENAME
Attrdesc type = CHAR
Attrdesc size = 24
Attrdesc parentrel =EMP
Vext list follows:
Attrdesc name = ENO
Attrdesc type = INT
Attrdesc size = 2
Attrdesc paz-entrel =EMP
Next list follows:
Attrdesc name = CHILDREN
Attrdesc type =PREV-.DEFINED
Attrdesc rvatype =CHILDRENs
Attrdesc size = 2
Attrdesc parentrel =EMP
Sublist follows:
Attrdesc name = CNAME
Attrdesc type = CHAR
Attrdesc size = 12
Attrdesc parentrel = CHILDREN
Left input node follows:

QUERY node follows:
Query node Operator is: SELECT
Arg name = COMPANY
Arg reltype = COMP
Arg pred follows:
Pred oper is AND
Pred constant-on..right = FALSE
LEFT pred operand follows:
Op..type is PRED:
Pred oper is=
Pred constat.on.right = TRUE
LEFT pred operand follows:
Op..type is CHAR: LOC
RIGHT pred operand follows:
Op-.type is CHAR: "CHICAGO"
RIGHT pred operand follows:
Op-.type is PRED:
Pred oper is =
Pred constant..on-.right = TRUE
LEFT prod operand follows:
Op-.type is CHAR: DNO
RIGHT pred operand follows:
Op-.type is INT: 456
ARG list follows:
Attrdesc name = EMP
Attrdesc type = PREV..DEFINED
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Attrdesc rvatype = EMPs
Attrdesc size = 4
Attrdesc parentrel = COMPANY
List cond follows:
Pred oper is >
Pred constantonright = TRUE
LEFT pred operand follows:
Op-type is CHAR: SAL
RIGHT pred operand follows:
Op.type is INT: 1000

6. QUERY STATEMENT FOLLOWS:

SELECT NAME,DNAME,(SELECT NAME
FROM CHILDREN
WHERE AGE>5)

FROM DEPT,NEWEMP
WHERE DEPT.DNO = NEWEMP.DNO
AND LOC = "DAYTON";

QUERY node follows:
Query node Operator is: PROJECT

Arg name =
Arg reltype
ARG list follows:
Attrdesc name = DNAME
Attrdesc type = CHAR
Attrdesc size = 32
Attrdesc parentrel = DEPT
Next list follows:
Attrdesc name NAME

Attrdesc type = CHAR

Attrdesc size = 32
Attrdesc parentrel = NEWEMP

Next list follows:

Attrdesc name = CHILDREN
Attrdesc type = PREVDEFINED
Attrdesc rvatype = CHILD
Attrdesc size = 3
Attrdesc parentrel = NEWEMP
Sublist follows:
Attrdesc name = NAME
Attrdesc type = CHAR

Attrdesc parentrel = CHILDREN
Left input node follows:

QUERY node follows:
Query node Operator is: CARTESIAN PRODUCT
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Arg name =
Arg reltype =
Arg pred follows:
Pred oper is =
Pred constant.on.right = FALSE
LEFT pred operand follows:
Op.type is CHAR: DNO
With reference name DEPT
RIGHT pred operand follows:
Op-type is CHAR: DNO
With reference name NEWEMP
Left input node follows:
QUERY node follows:
Query node Operator is: SELECT
Arg name = DEPT
Arg reltype = DEPARTMENT
Arg pred follows:
Pred oper is =
Pred constantonright = TRUE
LEFT pred operand follows:
Op.type is CHAR: LOC
RIGHT pred operand follows:
Op.type is CHAR: "DAYTON"
Right input node follows:

QUERY node follows:
Query node Operator is: SELECT
Arg name = NEWEMP
Arg reltype = EMP
ARG list follows:
Attrdesc name = CHILDREN
Attrdesc type = PREVDEFINED
Attrdeso rvatype = CHILD
Attrdesc size = 3
Attrdesc parentrel = NEWEMP
List cond follows:
Pred oper is >
Pred constanton.right = TRUE
LEFT pred operand follows:
Op.type is CHAR: AGE
RIGHT pred operand follows:
Op-type is INT: 5
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D.3 NEST and UNNEST

1. QUERY STATEMENT FOLLOWS:

SELECT (SELECT ALL
FROM DEPT
WHERE DNAME = "SMITH"), EMP

FROM (NEST DEPTN
ON DNAME AS DEPT)

WHERE DNO = 123;

QUERY node follows:
Query node Operator is: PRO3ECT
Arg name =
Arg reltype =
ARG list follows:
Attrdesc name = DEPT
Attrdesc type- NEST
Attrdesc rvatype =
Attrdesc size = i
Attrdesc parentrel = DEPTN
Next list follows:
Attrdesc name = EMP
Attrdesc type = PREVDEFINED
Attrdesc rvatype = EMPs
Attrdesc size = 5
Attrdesc parentrel = DEPTN
Left input node follows:

QUERY node follows:
Query node Operator is: SELECT
Arg name =
Arg reltype =
Arg pred follows:
Pred oper is =
Pred constant-on-right = TRUE
LEFT pred operand follows:
Op.type is CHAR: DNO
RIGHT pred operand follows:
Optype is INT: 123
ARG list follows:
Attrdesc name = DEPT
Attrdesc type = NEST
Attrdesc rvatype =
Attrdesc size = i
Attrdesc parentrel = DEPTN
List cond follows:
Pred oper is =
Pred constant-on-right = TRUE
LEFT pred operand follows:
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Optype is CHAR: DNAME
RIGHT pred operand follows:
Op.type is CHAR: "SMITH"
Left input node follows:

QUERY node follows:
Query node Operator is: NEST
Arg name = DEPTN
Arg reltype =
ARG list follows:
Attrdesc name = DNAME
Attrdesc type = CHAR
Attrdesc size = 20
Attrdesc parentrel = DEPTN
ARG nest name = DEPT

2. QUERY STATEMENT FOLLOWS:

SELECT DNO,(SELECT ENAME,(SELECT CNAME
FROM CHILDREN)

FROM (NEST EMP
ON CNAME,CDOB AS CHILDREN)

WHERE SAL > 1500 )
FROM DEPTN;

QUERY node follows:
Query node Operator is: PROJECT
Arg name =
Arg reltype =
ARG list follows:
Attrdesc name = DNO
Attrdesc type = INT
Attrdesc size = I
Attrdesc parentrel = DEPTN
Next list follows:
Attrdesc name = EMP
Attrdesc type = PREVDEFINED
-Attrdesc rvatype = EMPs
Attrdesc size = 5
Attrdesc parentrel = DEPTN
Sublist follows:
Attrdesc name = ENAME
Attrdesc type = CHAR
Attrdesc size = 24
Attrdesc parentrel = EMP
Next list follows:
Attrdesc name = CHILDREN
Attrdesc type = NEST
Attrdesc rvatype =
Attrdesc size = 2
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Attrdesc parentrel EMP
Sublist follows:
Attrdesc name = CNAME
Attrdesc type =CHAR
Attrdesc size = 12
Attrdesc parentrel = CHILDREN'
Left input node follows:

QUERY node follows:
Query node Operator is: NEST
Arg name =
Arg reltype
ARG list follows:
Attrdesc name = EMP
Attrdesc type = PREV..DEFINED
Attrdesc rvatype = EMPs
Attrdesc size = 5
Attrdesc parentrel = DEPT-N
Sublist follows:
Attrdesc name =CNAME
Attrdesc type =CHAR
Attrdesc size = 12
Attrdesc parentrel = EMP
Next list follows:
Attrdesc name = C-.DOB
Attrdesc type =INT
Attrdesc size =2
Attrdes parentrel = EMP
ARG nest name = CHILDREN
Left input node follows:

QUERY node follows:
Query node Operator is: SELECT
Arg name = DEPT_.N
Arg reltype =DEPT-.N
ARG list follows:
Attrdesc name = EMP
Attrdesc type = PREV-.DEFINED
Attrdesc rvatype = EMPs
Attrdesc size = 6
Attrdesc parentrel = DEPT-.N
List cond follows:
Pred oper is >
Prod constant-.on-..ight = TRUE
LEFT pred operand follows:
Op..type is CHAR: SAL
RIGHT pred operand follows:
Op-.type is INT: 1500

3. QUERY STATEMENT FOLLOWS:
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UNNEST NEWEMP ON CHILDREN,PROJECTS;

QUERY node follows:
Query node Operator is: UNNEST
Arg name = NEWEMP
Arg reltype = EMP
ARG list follows:
Attrdesc name = CHILDREN
Attrdesc type = PREVDEFINED
Attrdesc rvatype = CHILD
Attrdesc size = 3
Attrdesc parentrel = NEWEMP
Next list follows:
Attrdesc name = PROJECTS
Attrdesc type = PREVDEFINED
Attrdesc rvatype = PROJECT
Attrdesc size = 2
Attrdesc parentrel = NEWEMP

4. QUERY STATEMENT FOLLOWS:

SELECT ENOENAMEDNAME
FROM (UNNEST COMPANY

ON EMP);

QUERY node follows:
Query node Operator is: PROJECT
Arg name =

Arg reltype =

ARG list follows:

Attrdesc name = DNAME
Attrdesc type = CHAR

Attrdesc size = 20

Attrdesc parentrel = COMPANY

Next list follows:
Attrdesc name = ENO
Attrdesc type = INT
Attrdesc size = 2

Attrdesc parentrel = EMP
Next list follows:
Attrdesc name = ENAME
Attrdesc type = CHAR
Attrdesc size = 24
Attrdesc parentrel = EMP
Left input node follows:

QUERY node follows:
Query node Operator is: UNNEST
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Arg name = COMPANY
Arg reltype = COMP
ARG list follows:
Attrdesc name =EMP
Attrdesc type =PREV..DEFINED
Attrdesc rvatype = EMPs
Attrdesc size = 4
Attrdesc parentrel = COMPANY

5. QUERY STATEMENT FOLLOWS:

SELECT ENO ,ENAME,DNAME
FROM (UNNEST COMPANY

ON EMP)
WHERE SAL > 1500;

QUERY node iollows:
Query node Operator is: PROJECT
Arg name=
Arg reltype
ARG list follows:
Attrdesc name = DNAME
Attrdesc type = CHAR
Attrdesc size =20
Attrdesc parentrel =COMPANY

Next list follows:
Attrdesc name = ENO
Attrdesc type =INT
Attrdesc size = 2
Attrdesc parentrel =EMP
Next list follows:
Attrdesc name = ENAME
Attrdesc type =CHAR
Attrdesc size = 24
Attrdesc parentrel = EMP
Left input node follows:

QUERY node follows:
Query nod3 Operator is: SELECT
Arg name =
Airg reltype
Arg pred follows:
Pred oper is >

LEFT -pred operand-follows:
Op-.type is CEAR: SAL
RIGHT-pred operand follows:
Op-type is INT: 1500
Left input node follows:
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QUERY node follows:
Query node Operator is: UNNEST
Arg name = COMPANY
Arg reltype = COMP
ARG list follows:
Attrdesc name = EMP
Attrdesc type = PREV..DEFINED
Attrdesc rvatype = EMPs
Attrdesc size =4
Attrdesc parentrel =COMPANY

6. QUERY STATV WINT FOLLOWS:

SELECT NEWEMP .NAME ,CHILDREN. NAME
FROM (UNNEST NEWEMP

ON CHILDREN);

QUERY node follows:
Query node Operator is: PROJECT
Arg name =
Arg reltype=
ARG list follows:
Attrdesc name = NAME
Attrdesc type = CHAR
Attrdesc size =32
Attrdesc parentrel = NEWEMP
Next list follows:
Attrdesc name = NAME
Attrdesc type = CHAR
Attrdesc size = 32
Attrdesc parentrel =CHILDREN
Left input node follows:

QUERY node follows:
Query node Operator is: TJHNEST
Arg name = NEWEMP
Arg reltype EMP
ARG list follows:
Attrdesc name = CHILDREN
Attrdesc type =PREV-.DEFINED
Attrdesc rvatype = CHILD
Attrrtosc size =3
Attrdesc parertrol =NEWEMP
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